Hoạt động 1
Cho dãy số \( - 2;3;8;13;18;23;28\)
Kể từ số hạng thứ hai, nêu mối liên hệ của mỗi số hạng với số hạng đứng ngay trước nó.
Dựa vào công thức dãy số để xác định
Số hạng thứ hai = Số hạng thứ nhất + 5
Số hạng thứ ba = Số hạng thứ hai + 5
Số hạng thứ tư = Số hạng thứ ba + 5
…
Số hạng thứ bảy = Số hạng thứ sáu + 5
Số hạng đứng sau = Số hạng đứng trước + 5
Luyện tập - vận dụng 1
Cho (un) là cấp số cộng \({u_1}\; = {\rm{ }}-{\rm{ }}7,{\rm{ }}{u_2}\; = {\rm{ }}-{\rm{ }}2.\) Viết năm số hạng đầu của cấp số cộng đó.
Tìm \( d = u_2 - u_1 \). Từ đó tìm \(u_1, u_2, ..., u_5\) bằng cách thay n = 1, 2, 3, 4, 5 vào công thức \(u_n = u_1+ (n-1)d\)
Advertisements (Quảng cáo)
Công sai của cấp số cộng đã cho là: \(d{\rm{ }} = {\rm{ }}{u_2}\;-{\rm{ }}{u_1}\; = {\rm{ }}-{\rm{ }}2{\rm{ }}-{\rm{ }}\left( {-{\rm{ }}7} \right){\rm{ }} = {\rm{ }}5.\)
Khi đó:
\(u_3 = -7+ (3-1).5=3\)
\(u_4 = -7+ (4-1).5=8\)
\(u_5 = -7+ (5-1).5=13\)
Vậy 5 số hạng đầu của cấp số cộng là: -7, -2, 3, 8, 13.
Luyện tập - vận dụng 2
Cho dãy số (un) với \({u_n} = - 5n + 7(n \ge 1).\)Dãy (\({u_n}\)) có là cấp số cộng không? Vì sao?
Xét hiệu \(u_n+1 - u_n = d\), với d không đổi => \(({u_n})\) là cấp số cộng
Ta có: \(u_n+1= - 5(n +1)+ 7=-5n+2\)
Do đó, \(u_n+1 - u_n = -5n+2-( - 5n + 7)=-5=d\)
=> \(({u_n})\) là cấp số cộng