Trang chủ Lớp 11 SGK Toán 11 - Cùng khám phá Bài 3.18 trang 80 Toán 11 tập 1 – Cùng khám phá:...

Bài 3.18 trang 80 Toán 11 tập 1 - Cùng khám phá: Tìm các giới hạn \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{2x + 1}}{{x - 2}}\) \(\mathop {\lim }\limits_{x \to...

Gợi ý giải - Bài 3.18 trang 80 SGK Toán 11 tập 1 - Cùng khám phá - Bài tập cuối chương 3. Tìm các giới hạn \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{2x + 1}}{{x - 2}}\) \(\mathop {\lim }\limits_{x \to

Question - Câu hỏi/Đề bài

Tìm các giới hạn

a) \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{2x + 1}}{{x - 2}}\)

b) \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{\left| {x - 1} \right|}}{{{x^2} - 1}}\)

c) \(\mathop {\lim }\limits_{x \to {0^ - }} \frac{{2x + 1}}{{\sqrt {{x^2}} }}\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

a, c Đây là giới hạn một bên của hàm số

Tính giới hạn của tử số và giới hạn của mẫu số rồi áp dụng quy tắc tính giới hạn của một thương

\(\mathop {\lim }\limits_{x \to {a^ + }} \frac{1}{{x - a}} = + \infty \) và \(\mathop {\lim }\limits_{x \to {a^ - }} \frac{1}{{x - a}} = - \infty \), với mọi số thực \(a\).

b, Đây là giới hạn một bên của hàm số

Dạng vô định \(\frac{0}{0}\) nên ta phải thực hiện khử dạng vô định

Answer - Lời giải/Đáp án

Advertisements (Quảng cáo)

a,

Ta có \(\mathop {\lim }\limits_{x \to {2^ + }} \left( {2x + 1} \right) = 2.2 + 1 = 5 > 0\)

Với \(x > 2\) thì \(x - 2 > 0\) và \(\mathop {\lim }\limits_{x \to {2^ + }} \left( {x - 2} \right) = 0\) do đó \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{2x + 1}}{{x - 2}} = + \infty \)

b,

Với \(x

Ta có \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{\left| {x - 1} \right|}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{ - \left( {x - 1} \right)}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{ - \left( {x - 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{ - 1}}{{x + 1}} = - \frac{1}{2}\)

c,

Với \(x

Ta có \(\mathop {\lim }\limits_{x \to {0^ - }} \frac{{2x + 1}}{{\sqrt {{x^2}} }} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{2x + 1}}{{ - x}}\)

Ta có \(\mathop {\lim }\limits_{x \to {0^ - }} \left( {2x + 1} \right) = 1 > 0\)

Với \(x 0\) và \(\mathop {\lim }\limits_{x \to {0^ - }} \left( { - x} \right) = 0\) dó đó \(\mathop {\lim }\limits_{x \to {0^ - }} \frac{{2x + 1}}{{ - x}} = + \infty \)

Vậy \(\mathop {\lim }\limits_{x \to {0^ - }} \frac{{2x + 1}}{{\sqrt {{x^2}} }} = + \infty \)

Advertisements (Quảng cáo)