Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của S trên (ABC) trùng với trung điểm H của cạnh BC và SBC là tam giác đều. Tính số đo của góc giữa SA và (ABC).
Chứng minh AH là hình chiếu vuông góc của SA trên (ABC) từ đó suy ra góc cần tìm là góc ^SAH
Dựa vào đường trung tuyến của tam giác đều để tính cạnh AH,SH
Sử dụng tỉ số lượng giác: tanα để tính số đo góc
Advertisements (Quảng cáo)
Vì hình chiếu vuông góc của S trên (ABC) là trung điểm H của BC nên SH⊥(ABC)
Vì SH⊥(ABC) nên AH là hình chiếu vuông góc của SA trên (ABC)
Vậy góc giữa SA và (ABC) là góc giữa SA và AH, góc giữa SA và AH là góc ^SAH
Vì ΔABC là tam giác đều cạnh a suy ra đường trung tuyến AH nên AH=a√32
Vì ΔSBC là tam giác đều có cạnh BC=a suy ra đường trung tuyến SH=a√32
Xét ΔSAH vuông tại A có tan^SAH=SHAH=a√32:a√32=1⇒^SAH=45o