Trang chủ Lớp 11 SGK Toán 11 - Cùng khám phá Bài 8.12 trang 63 Toán 11 tập 2 – Cùng khám phá:...

Bài 8.12 trang 63 Toán 11 tập 2 - Cùng khám phá: Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a...

Chứng minh \(BC \bot \left( {SAB} \right)\) từ đó suy ra \(SB\) là hình chiếu của \(SC\) trên \(\left( {SAB} \right)\). Vận dụng kiến thức giải - Bài 8.12 trang 63 SGK Toán 11 tập 2 - Cùng khám phá - Bài 2 - Đường thẳng vuông góc với mặt phẳng. Phép chiếu vuông góc. Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc mặt đáy và \(SA = \sqrt 2 . a\)...

Question - Câu hỏi/Đề bài

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc mặt đáy và \(SA = \sqrt 2 .a\).Tính số đo góc giữa SC và (SAB)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Chứng minh \(BC \bot \left( {SAB} \right)\) từ đó suy ra \(SB\) là hình chiếu của \(SC\) trên \(\left( {SAB} \right)\)

Từ đó xác định góc cần tìm là góc \(\widehat {BSC}\)

Sử dụng Định lý Pi – ta – go để tính cạnh \(SB\) trong \(\Delta SAB\) vuông tại \(A\)

Sử dụng \(\tan \alpha \) để tính góc \(\widehat {BSC}\) trong tam giác \(SBC\) vuông tại \(B\)

Answer - Lời giải/Đáp án

Advertisements (Quảng cáo)

Ta có \(SA \bot BC\) vì \(SA \bot \left( {ABCD} \right)\)

Vì \(\left\{ \begin{array}{l}BC \bot SA\\BC \bot AB\,\,\left( {gt} \right)\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right)\)

Suy ra \(SB\) là hình chiếu vuông góc của \(SC\) trên \(\left( {SAB} \right)\)

Vậy góc giữa \(SC\) và \(\left( {SAB} \right)\) là góc giữa \(SC\) và \(SB\)

Vậy góc đó là góc \(\widehat {BSC}\)

Xét \(\Delta SAB\) vuông tại \(A\) có \(SA = a\sqrt 2 ,AB = a \Rightarrow SB = \sqrt {S{A^2} + A{B^2}} = \sqrt {2{a^2} + {a^2}} = a\sqrt 3 \)

Xét \(\Delta SBC\) vuông tại \(B\) có \(\tan \widehat {BSC} = \frac{{BC}}{{SB}} = \frac{a}{{a\sqrt 3 }} = \frac{1}{{\sqrt 3 }} \Rightarrow \widehat {BSC} = {30^o}\)

Advertisements (Quảng cáo)