Trang chủ Lớp 11 SGK Toán 11 - Cùng khám phá Mục 2 trang 22, 23, 24, 25 Toán 11 tập 1 –...

Mục 2 trang 22, 23, 24, 25 Toán 11 tập 1 - Cùng khám phá: Tính sin và côsin của góc lượng giác có số đo radian bằng x trong các trường hợp sau...

Sử dụng máy tính cầm tay tính \(\sin \frac{\pi }{2}, \cos \frac{\pi }{2}, \sin \left( { - \frac{\pi }{4}} \right), \cos \left( { - \frac{\pi }{4}} \right), \sin \frac{{11\pi }}{3}, \cos \frac{{11\pi }}{3}, \sin \left( { - 2, 5} \right), \cos \left( { - 2, 5} \right)\). Hướng dẫn trả lời Hoạt động 3, Luyện tập 3 , Vận dụng 1 , Hoạt động 4 , Luyện tập 4 , Hoạt động 5 , Luyện tập 5 , Hoạt động 6 , Luyện tập 6 - mục 2 trang 22, 23, 24, 25 SGK Toán 11 tập 1 - Cùng khám phá - Bài 4. Hàm số lượng giác và đồ thị. Tính sin và côsin của góc lượng giác có số đo radian bằng x trong các trường hợp sau...

Hoạt động 3

Tính sin và côsin của góc lượng giác có số đo radian bằng x trong các trường hợp sau:

\(x = \frac{\pi }{2};x = - \frac{\pi }{4};x = \frac{{11\pi }}{3};x = - 2,5.\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Sử dụng máy tính cầm tay tính \(\sin \frac{\pi }{2},\cos \frac{\pi }{2},\sin \left( { - \frac{\pi }{4}} \right),\cos \left( { - \frac{\pi }{4}} \right),\sin \frac{{11\pi }}{3},\cos \frac{{11\pi }}{3},\sin \left( { - 2,5} \right),\cos \left( { - 2,5} \right)\).

Answer - Lời giải/Đáp án

\(\begin{array}{l}\cos \frac{\pi }{2} = 0,\sin \frac{\pi }{2} = 1\\\cos \frac{{ - \pi }}{4} = \frac{{\sqrt 2 }}{2},\sin \frac{{ - \pi }}{4} = - \frac{{\sqrt 2 }}{2}\\\cos \frac{{11\pi }}{3} = \frac{1}{2},\sin \frac{{11\pi }}{3} = - \frac{{\sqrt 3 }}{2}\\\cos \left( { - 2,5} \right) \approx - 0,8,\sin \left( { - 2,5} \right) = - 0,6\end{array}\)


Luyện tập 3

Tính giá trị của hàm số \(y = \sin x\) và hàm số \(y = \cos x\) khi \(x = \frac{{3\pi }}{2};x = - \frac{{11\pi }}{4};x = \frac{{14\pi }}{3}.\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Sử dụng máy tính cầm tay tính \(\sin \frac{{3\pi }}{2},\cos \frac{{3\pi }}{2},\sin \left( { - \frac{{11\pi }}{4}} \right),\cos \left( { - \frac{{11\pi }}{4}} \right),\sin \frac{{14\pi }}{3},\cos \frac{{14\pi }}{3}\).

Answer - Lời giải/Đáp án

\(\begin{array}{l}y = \cos \frac{{3\pi }}{2} = 0,y = \sin \frac{{3\pi }}{2} = - 1\\y = \cos \frac{{ - 11\pi }}{4} = - \frac{{\sqrt 2 }}{2},y = \sin \frac{{ - 11\pi }}{4} = - \frac{{\sqrt 2 }}{2}\\y = \cos \frac{{14\pi }}{3} = - \frac{1}{2},y = \sin \frac{{14\pi }}{3} = \frac{{\sqrt 3 }}{2}\end{array}\)


Vận dụng 1

Phương trình li độ của một vật dao động điều hòa có dạng: \(x = - 6\cos \left( {\pi t + \frac{\pi }{6}} \right)\), trong đó x (cm) là li độ của vật (hay độ dời của vật so với vị trí cân bằng) tại thời điểm t (giây). Tính li độ của vật tại thời điểm t = 3 giây.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Thay t = 3 vào phương trình li độ.

Answer - Lời giải/Đáp án

Thay t = 3 vào phương trình li độ, ta có:

\(x = - 6\cos \left( {\pi .3 + \frac{\pi }{6}} \right) = - 6\cos \left( {\frac{{19\pi }}{6}} \right) = 3\sqrt 3 \)

Vậy li độ tại thời điểm t = 3 giây là \(3\sqrt 3 \)(cm).


Hoạt động 4

Tính tang và côtang của góc lượng giác có số đo bằng x trong các trường hợp sau:

\(x = \frac{{7\pi }}{3};x = - \frac{{5\pi }}{4};x = \frac{{11\pi }}{6};x = - 3.\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Sử dụng máy tính cầm tay tính \(\tan \frac{{7\pi }}{3},\cot \frac{{7\pi }}{3},\tan \left( { - \frac{{5\pi }}{4}} \right),\cot \left( { - \frac{{5\pi }}{4}} \right),\tan \frac{{11\pi }}{6},\cot \frac{{11\pi }}{6},\tan \left( { - 3} \right),\cot \left( { - 3} \right)\).

Answer - Lời giải/Đáp án

\(\begin{array}{l}\tan \frac{{7\pi }}{3} = \sqrt 3 ,\cot \frac{{7\pi }}{3} = \frac{1}{{\sqrt 3 }}\\\tan \left( { - \frac{{5\pi }}{4}} \right) = - 1,\cot \left( { - \frac{{5\pi }}{4}} \right) = - 1\\\tan \frac{{11\pi }}{6} = - \frac{{\sqrt 3 }}{3},\cot \frac{{11\pi }}{6} = - \sqrt 3 \\\tan \left( { - 3} \right) \approx 0,14;\cot \left( { - 3} \right) \approx 7,02\end{array}\)


Luyện tập 4

Tính giá trị của hàm số \(y = \tan x\) và hàm số \(y = \cot x\) khi \(x = \frac{{13\pi }}{3};x = - \frac{{9\pi }}{4};x = \frac{{19\pi }}{6}.\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Sử dụng máy tính cầm tay tính \(\tan \frac{{13\pi }}{3},\cot \frac{{13\pi }}{3},\tan \left( { - \frac{{9\pi }}{4}} \right),\cot \left( { - \frac{{9\pi }}{4}} \right),\tan \frac{{19\pi }}{6},\cot \frac{{19\pi }}{6}\).

Answer - Lời giải/Đáp án

\(\begin{array}{l}\tan \frac{{13\pi }}{3} = \sqrt 3 ,\cot \frac{{13\pi }}{3} = \frac{1}{{\sqrt 3 }}\\\tan \left( { - \frac{{9\pi }}{4}} \right) = - 1,\cot \left( { - \frac{{9\pi }}{4}} \right) = - 1\\\tan \frac{{19\pi }}{6} = \frac{{\sqrt 3 }}{3},\cot \frac{{19\pi }}{6} = \sqrt 3 \end{array}\)


Hoạt động 5

a) So sánh các giá trị \(\sin x\) và \(\sin \left( { - x} \right)\), \(\cos x\) và \(\cos \left( { - x} \right)\).

b) So sánh các giá trị \(\tan x\) và \(\tan \left( { - x} \right)\) khi \(x \ne \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\).

c) So sánh các giá trị \(\cot x\) và \(\cot \left( { - x} \right)\) khi \(x \ne k\pi \left( {k \in \mathbb{Z}} \right)\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Áp dụng công thức lượng giác giữa 2 góc đối nhau.

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

a)

\(\begin{array}{l}\sin \left( { - x} \right) = - \sin x\\\cos \left( { - x} \right) = \cos x\end{array}\)

b) \(\tan \left( { - x} \right) = - \tan x\)

c) \(\cot \left( { - x} \right) = \cot x\)


Luyện tập 5

Xác định tính chẵn, lẻ của hàm số \(y = f\left( x \right) = \sin x - \tan x.\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

So sánh\(f\left( { - x} \right)\) và \(f\left( x \right)\).

Answer - Lời giải/Đáp án

\(\begin{array}{l}D = \mathbb{R}\\\forall x \in D \Rightarrow - x \in D\end{array}\)

\(f\left( { - x} \right) = \sin \left( { - x} \right) - \tan \left( { - x} \right) = - \sin x + \tan x = - \left( {\sin x - \tan x} \right) = - f\left( x \right)\)

Vậy hàm số đã cho là hàm số lẻ.


Hoạt động 6

Tìm một số \(T \ne 0\) sao cho \(f\left( {x + T} \right) = f\left( x \right)\) với mọi x thuộc tập xác định của mỗi hàm số sau:

a) \(f\left( x \right) = \sin x;\)

b) \(f\left( x \right) = \cos x;\)

c) \(f\left( x \right) = \tan x;\)

d) \(f\left( x \right) = \cot x.\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Dựa vào tính chất

\(\begin{array}{l}\sin \left( {\alpha + k2\pi } \right) = \sin \alpha \\\cos \left( {\alpha + k2\pi } \right) = \cos \alpha \\\tan \left( {\alpha + k\pi } \right) = \tan \alpha \\\cot \left( {\alpha + k\pi } \right) = \cot \alpha \end{array}\)

Tìm ra T, từ đó chứng minh \(f\left( {x + T} \right) = f\left( x \right)\) với mọi x thuộc tập xác định của mỗi hàm số.

Answer - Lời giải/Đáp án

a)

\(\begin{array}{l}D = \mathbb{R}\\\forall x \in D \Rightarrow x + 2\pi \in D,x - 2\pi \in D\\f\left( {x + 2\pi } \right) = \sin \left( {x + 2\pi } \right) = \sin x = f\left( x \right)\end{array}\)

b)

\(\begin{array}{l}D = \mathbb{R}\\\forall x \in D \Rightarrow x + 2\pi \in D,x - 2\pi \in D\\f\left( {x + 2\pi } \right) = \cos \left( {x + 2\pi } \right) = \cos x = f\left( x \right)\end{array}\)

c)

\(\begin{array}{l}D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\\\forall x \in D \Rightarrow x + \pi \in D,x - \pi \in D\\f\left( {x + \pi } \right) = \tan \left( {x + \pi } \right) = \tan x = f\left( x \right)\end{array}\)

d)

\(\begin{array}{l}D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\\\forall x \in D \Rightarrow x + \pi \in D,x - \pi \in D\\f\left( {x + \pi } \right) = \cot \left( {x + \pi } \right) = \cot x = f\left( x \right)\end{array}\)


Luyện tập 6

Chứng minh hàm số \(y = f\left( x \right) = 1 - \cot x\) là hàm số tuần hoàn.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Chỉ ra \(f\left( {x + T} \right) = f\left( x \right)\) với T khác 0 là chu kì tuần hoàn.

Answer - Lời giải/Đáp án

\(\begin{array}{l}D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\\\forall x \in D \Rightarrow x + \pi \in D,x - \pi \in D\\f\left( {x + \pi } \right) = 1 - \cot \left( {x + \pi } \right) = 1 - \cot x = f\left( x \right)\end{array}\)

Vậy hàm số đã cho là hàm số tuần hoàn.

Advertisements (Quảng cáo)