Trang chủ Lớp 11 Toán lớp 11 Nâng cao (sách cũ) Câu 44 trang 122 SGK Đại số và Giải tích 11 Nâng...

Câu 44 trang 122 SGK Đại số và Giải tích 11 Nâng cao, Chứng minh rằng...

Chứng minh rằng. Câu 44 trang 122 SGK Đại số và Giải tích 11 Nâng cao - Câu hỏi và bài tập ôn tập chương III

Bài 44. Chứng minh rằng

\({1.2^2} + {2.3^2} + ... + \left( {n - 1} \right).{n^2} = {{n\left( {{n^2} - 1} \right)\left( {3n + 2} \right)} \over {12}}\)    (1)

Với mọi số nguyên \(n ≥ 2\)

+) Với \(n = 2\) ta có :

\({1.2^2} = {{2\left( {{2^2} - 1} \right)\left( {3.2 + 2} \right)} \over {12}} = 4\)

Vậy (1) đúng với \(n = 2\)

Advertisements (Quảng cáo)

+) Giả sử (1) đúng với \(n = k\), tức là ta có :

\({1.2^2} + {2.3^2} + ... + \left( {k - 1} \right){k^2} = {{k\left( {{k^2} - 1} \right)\left( {3k + 2} \right)} \over {12}}\)

+) Ta chứng minh (1) đúng với \(n=k+1\)

\(\eqalign{
& {1.2^2} + {2.3^2} + ... + \left( {k - 1} \right).{k^2} + k.{\left( {k + 1} \right)^2} \cr
& = {{k\left( {{k^2} - 1} \right)\left( {3k + 2} \right)} \over {12}} + k{\left( {k + 1} \right)^2} \cr
& = {{k\left( {k + 1} \right)\left[ {\left( {k - 1} \right)\left( {3k + 2} \right) + 12\left( {k + 1} \right)} \right]} \over {12}} \cr
& = {{k\left( {k + 1} \right)\left( {3{k^2} + 11k + 10} \right)} \over {12}} \cr
& = {{k\left( {k + 1} \right)\left[ { {3k\left( {k + 2} \right)} + 5\left( {k + 2} \right)} \right]} \over {12}} \cr
& = {{\left( {k + 1} \right)\left( {{k^2} + 2k} \right)\left( {3k + 5} \right)} \over {12}} \cr
& = {{\left( {k + 1} \right)\left[ {{{\left( {k + 1} \right)}^2} - 1} \right]\left[ {3\left( {k + 1} \right) + 2} \right]} \over {12}} \cr} \)

Điều đó chứng tỏ (1) đúng với \(n = k + 1\)

Từ các chứng minh trên suy ra (1) đúng với mọi \(n ≥ 2\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)