Trang chủ Lớp 11 Toán lớp 11 (sách cũ) Câu 6 trang 122 SGK Hình học 11: Ôn tập chương III...

Câu 6 trang 122 SGK Hình học 11: Ôn tập chương III - Vectơ trong không gian. Quan hệ vuông góc trong không gian...

Câu 6 trang 122 SGK Hình học 11: Ôn tập chương III - Vectơ trong không gian. Quan hệ vuông góc trong không gian. Cho hình lập phương ABCD.A’B’C’D’ cạnh a.

Bài 6. Cho hình lập phương \(ABCD.A’B’C’D’\)  cạnh \(a\).

a) Chứng minh \(BC’\) vuông góc với mặt phẳng \((A’B’C’D)\)

b) Xác định và tính độ dài đoạn vuông góc chung của \(AB’\) và \(BC’\)

a) Ta có tứ giác \(BCC’B’\) là hình vuông nên

\(BC’ ⊥ B’C\)         (1)

Mặt khác \(A’B’ ⊥ (BCC’B’)\)

\(⇒ A’B’ ⊥ BC’\)            (2)

Từ (1) và (2) suy ra: \(BC’⊥ (A’B’C’D’)\)

b) Do \(AD’//BC’\) nên mặt phẳng \((AB’D’)\) là mặt phẳng chứa \(AB’\) và song song với \(BC’\).

Ta tìm hình chiếu của \(BC’\) trên \(mp (AB’D’)\)

Gọi \(E, F\) là tâm của các mặt bên \(ADD’A’\) và \(BCC’B’\)

Từ \(F\) kẻ \(FI ⊥ B’E\). Ta có \(BC’ //AD’\) mà \(BC’ ⊥ (A’B’CD)\)

Advertisements (Quảng cáo)

\(⇒ AD’ ⊥ (A’B’CD)\) và \(IF ⊂(A’B’CD)\)

\(AD’ ⊥ IF\) (3)

\(EB’⊥IF\)   (4)

Từ (3) và (4) suy ra : \(IF ⊥ (AB’D’)\)

Vậy \(I\) là hình chiếu của \(F\) trên \(mp (AB’D’)\). Qua \(I\) ta dựng đường thẳng song song với \(BC’\) thì đường thẳng này chính là hình chiếu của \(BC’\) trên mp \((AB’D’)\)

Đường thẳng qua \(I\) song song với \(BC’\) cắt \(AB’\) tại \(K\). Qua \(K\) kẻ đường thẳng song song với \(IF\), đường này cắt \(BC’\) tại \(H\). \(KH\) chính là đường vuông góc chung của \(AB’\) và \(BC’\). Thật vậy:

\({\rm{IF}} \bot (AB’D’)\)

\(\Rightarrow IF ⊥ AB’\) và \(KH // IF\) suy ra \(KH ⊥ AB’\)

\(\left. \matrix{
BC’ \bot (A’B’CD) \hfill \cr
{\rm{IF}} \subset {\rm{(A’B’CD)}} \hfill \cr} \right\} \Rightarrow \left. \matrix{
{\rm{IF}} \bot {\rm{BC’}} \hfill \cr
{\rm{KH//IF}} \hfill \cr} \right\} \Rightarrow KH \bot BC’\)

 Tam giác \(EFB’\) vuông góc tại \(F\), \(FI\) là đường cao thuộc cạnh huyền nên

\({1 \over {I{F^2}}} = {1 \over {FB{‘^2}}} + {1 \over {F{E^2}}}\) với 

\(\left\{ \matrix{
FB’ = {{a\sqrt 2 } \over 2} \hfill \cr
{\rm{EF = a}} \hfill \cr} \right.\)

Ta tính ra: \({\rm{IF}} = {{a\sqrt 3 } \over 3} \Rightarrow KH = {\rm{IF = }}{{a\sqrt 3 } \over 3}\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)