Trang chủ Lớp 12 Toán lớp 12 Nâng cao (sách cũ) Bài 10 Trang 152 SGK Đại số và Giải tích 12 Nâng...

Bài 10 Trang 152 SGK Đại số và Giải tích 12 Nâng cao, Không tìm nguyên hàm hãy tính các tích phân sau:...

Không tìm nguyên hàm hãy tính các tích phân sau. Bài 10 Trang 152 SGK Đại số và Giải tích 12 Nâng cao - Bài 3. Tích phân

Bài 10. Không tìm nguyên hàm hãy tính các tích phân sau:

a) \(\int\limits_{ - 2}^4 {\left( {{x \over 2} + 3} \right)dx} ;\)             \(b)\,\int\limits_{ - 1}^2 {\left| x \right|} dx\)                 

c) \(\int\limits_{ - 3}^3 {\sqrt {9 - {x^2}} } dx\) 

Hướng dẫn: Áp dụng định lí 1.

a) Tích phân đó bằng diện tích hình thang ABCD với cạnh nghiêng là đường thẳng \(y = {x \over 2} + 3.\) Diện tích đó là \(\left( {2 + 5} \right){6 \over 2} = 21.\) vậy \(\int\limits_{ - 2}^4 {\left( {{x \over 2} + 3} \right)dx = 21} .\) 

Advertisements (Quảng cáo)

b)

 

Từ hình trên ta thấy hình A gồm 2 tam giác. Do đó tích phân bằng diện tích của A và là \({1 \over 2}.1.1 + {1 \over 2}2.2 = 0,5 + 2 = 2,5\) 

Vậy \(\int\limits_{ - 1}^2 {\left| x \right|} dx = {5 \over 2}\).

c) Tích phân bằng diện tích nửa đường tròn \({x^2} + {y^2} = 9\)(hình). Đây là đường tròn tâm là gốc tọa độ bán kính là 3. Do đó diện tích nửa dường tròn là \(9{\pi  \over 2} = 4,5\pi .\)

Vậy \(\int\limits_{ - 3}^3 {\sqrt {9 - {x^2}} } dx = 4,5\pi \)

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)