Trang chủ Lớp 12 Toán lớp 12 Nâng cao (sách cũ) Bài 78 trang 127 SGK giải tích 12 nâng cao, Giải phương...

Bài 78 trang 127 SGK giải tích 12 nâng cao, Giải phương trình:...

Giải phương trình. Bài 78 trang 127 SGK giải tích 12 nâng cao - Bài 8. Hệ phương trình mũ và lôgarit

Bài 78. Giải phương trình

\(a)\,\left( {{1 \over 3}} \right) ^x= x + 4\,;\)

\(b)\,{\left( {\sin {\pi  \over 5}} \right)^x} + {\left( {\cos {\pi  \over 5}} \right)^x} = 1.\)


a) Rõ ràng \(x=-1\) là nghiệm của phương trình

Với \(x<-1\) ta có \({\left( {{1 \over 3}} \right)^{ - x}} > 3 > x + 4\) phương trình không có nghiệm \(x<-1\)

Với \(x>-1\) ta có \({\left( {{1 \over 3}} \right)^x} < {\left( {{1 \over 3}} \right)^{ - 1}} = 3 < x + 4\) phương trình không có nghiệm \(x>-1\)

Vậy \(S = \left\{ { - 1} \right\}\)

Advertisements (Quảng cáo)

b) Rõ ràng \(x=2\) là nghiệm của phương trình

Do \( 0 < \sin {\pi  \over 5} < 1\) và \(0 < \cos {\pi  \over 5} < 1\) nên:

Nếu \(x>2\) thì \({\left( {\sin {\pi  \over 5}} \right)^x} < {\left( {\sin {\pi  \over 5}} \right)^2}\) và \({\left( {\cos {\pi  \over 5}} \right)^x} < {\left( {\cos {\pi  \over 5}} \right)^2}\)

\( \Rightarrow {\left( {\sin {\pi  \over 5}} \right)^x} + {\left( {\cos {\pi  \over 5}} \right)^2} < 1\)

- Nếu \(x < 2\) thì \({\left( {\sin {\pi  \over 5}} \right)^x} > {\left( {\sin {\pi  \over 5}} \right)^2}\) và \({\left( {\cos {\pi  \over 5}} \right)^x} > {\left( {\cos {\pi  \over 5}} \right)^2}\)

                  \( \Rightarrow {\left( {\sin {\pi  \over 5}} \right)^x} + {\left( {\cos {\pi  \over 5}} \right)^2} > 1\)   

Vậy \(S = \left\{ 2 \right\}\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)