Trang chủ Lớp 7 SBT Toán 7 - Cánh diều Bài 52 trang 57 SBT Toán lớp 7 tập 1 Cánh diều:...

Bài 52 trang 57 SBT Toán lớp 7 tập 1 Cánh diều: Ta áp dụng tính chất của dãy tỉ số bằng nhau:...

Giải Bài 52 trang 57 sách bài tập toán 7 tập 1 - Cánh diều - Bài 6. Dãy tỉ số bằng nhau

Question - Câu hỏi/Đề bài

Tổng số trang của 8 quyển vở loại một, 9 quyển vở loại hai và 5 quyển vở loại ba là 1 980 trang. Số trang mỗi quyển loại hai bằng \(\dfrac{2}{3}\) số trang của mỗi quyển vở loại một. Số trang của bốn quyển vở loại ba bằng số trang của ba quyển vở loại hai. Tính số trang mỗi quyển vở của từng loại vở trên.

Ta áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{g} = \dfrac{{a + c + e}}{{b + d + g}} = \dfrac{{a - c - e}}{{b - d - g}} = \dfrac{{a - c + e}}{{b - d + g}}\) với các tỉ số đều có nghĩa.

Với dãy tỉ số bằng nhau \(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{g} \Rightarrow a:b:e = c:d:g\).

Answer - Lời giải/Đáp án

Gọi số trang mỗi quyển vở của loại một, hai, ba tương ứng là x, y, z (quyển) (\(x,y,z \in N^*\)).

Advertisements (Quảng cáo)

Ta có:

     Số trang mỗi quyển loại hai bằng \(\dfrac{2}{3}\) số trang của mỗi quyển vở loại một. Suy ra: \(y = \dfrac{2}{3}x \Rightarrow \dfrac{y}{2} = \dfrac{x}{3}\).

     Số trang của bốn quyển vở loại ba bằng số trang của ba quyển vở loại hai. Suy ra: \(4z = 3y \Rightarrow \dfrac{y}{4} = \dfrac{z}{3}\).

Suy ra: 

\(\begin{array}{l}\dfrac{x}{3} = \dfrac{y}{2} = \dfrac{{2y}}{4} \Rightarrow \dfrac{x}{{3{\rm{ }}.{\rm{ }}2}} = \dfrac{y}{4} \Rightarrow \dfrac{x}{6} = \dfrac{y}{4}\\ \Rightarrow \dfrac{x}{6} = \dfrac{y}{4} = \dfrac{z}{3}\end{array}\).

Mà tổng số trang của 8 quyển vở loại một, 9 quyển vở loại hai và 5 quyển vở loại ba là 1 980 trang nên \(8x + 9y + 5z = 1{\rm{ 980}}\).

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{6} = \dfrac{y}{4} = \dfrac{z}{3} = \dfrac{{8x + 9z + 5z}}{{8{\rm{ }}.{\rm{ }}6 + 9{\rm{ }}.{\rm{ }}4 + 5{\rm{ }}.{\rm{ }}3}} = \dfrac{{1{\rm{ 980}}}}{{99}} = 20\).

Vậy số trang mỗi quyển vở của loại một, hai, ba lần lượt là:

\(\begin{array}{l}20{\rm{ }}{\rm{. 6  =  120}}\\{\rm{20 }}{\rm{. 4  =  80}}\\{\rm{20 }}{\rm{. 3  =  60}}\end{array}\).

Advertisements (Quảng cáo)