Trang chủ Lớp 7 SBT Toán 7 - Chân trời sáng tạo Bài 5 trang 63 SBT Toán 7 Chân trời sáng tạo: Cho...

Bài 5 trang 63 SBT Toán 7 Chân trời sáng tạo: Cho tam giác Abc cân tại A có góc A nhọn và H là trực tâm. Cho biết (widehat {BHC}...

Giải Bài 5 trang 63 sách bài tập toán 7 - Chân trời sáng tạo - Bài 8: Tính chất ba đường cao của tam giác

Question - Câu hỏi/Đề bài

Cho tam giác Abc cân tại A có góc A nhọn và H là trực tâm. Cho biết \(\widehat {BHC} = {150^o}\). Tính các góc của tam giác ABC.

- Áp dụng: tổng ba góc trong một tam giác bằng \({180^o}\) và đường cao trong tam giác để tính các số đo góc.

Answer - Lời giải/Đáp án

Vẽ hai đường cao BE và CF của tam giác ABC.

Advertisements (Quảng cáo)

Xét tam giác BHC ta có:

\(\widehat {HBC} + \widehat {HCB} = {180^o} - {150^o} = {30^o}\)

Xét hai tam giác vuông BCF và CBE ta có:

\(\widehat B + \widehat C = {180^o} - \left( {\widehat {HBC} + \widehat {HCB}} \right) = {180^o} - {30^o} = {150^o}\)

Do tam giác ABC cân tại A nên ta có:

\(\widehat B = \widehat C = \frac{{{{150}^o}}}{2} = {75^o}\)

\(\widehat {{A^{}}} = {180^o} - {150^o} = {30^o}\)

 

Advertisements (Quảng cáo)