Tam giác ABC có độ dài \(AB = 9cm,AC = 12cm,BC = 14cm\). Tam giác A’B’C’ đồng dạng với tam giác ABC và có chu vi bằng 61,25cm. Hãy tính độ dài các cạnh của tam giác A’B’C’.
Sử dụng kiến thức về trường hợp đồng dạng thứ nhất của hai tam giác (c.c.c) để tính:
+ Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia thì hai tam giác đó đồng dạng với nhau.
Advertisements (Quảng cáo)
+ Nếu tam giác A’B’C’ đồng dạng với tam giác ABC theo tỉ số k thì tỉ số chu vi hai tam giác đó cũng bằng k.
Vì $\Delta A’B’C’\backsim \Delta ABC$ nên \(\frac{{A’B’}}{{AB}} = \frac{{A’C’}}{{AC}} = \frac{{B’C’}}{{BC}}\).
Suy ra \(\frac{{A’B’}}{9} = \frac{{A’C’}}{{12}} = \frac{{B’C’}}{{14}} = \frac{{{P_{A’B’C’}}}}{{{P_{ABC}}}} = \frac{{61,25}}{{35}} = \frac{7}{4}\)
Do đó, \(A’B’ = \frac{7}{4}.9 = 15,75\left( {cm} \right),A’C’ = \frac{7}{4}.12 = 21\left( {cm} \right),B’C’ = \frac{7}{4}.14 = 24,5\left( {cm} \right)\)