Thu gọn các đa thức sau:
a) \(ab\left( {3a - 2b} \right) - ab\left( {3b - 2a} \right)\);
b) \(\left( {a - 4b} \right)\left( {a + 2b} \right) + a\left( {a + 2b} \right)\).
- Sử dụng kiến thức cộng trừ hai đa thức để tính:
+ Viết hai đa thức trong ngoặc nối với nhau bằng dấu cộng (+) hay trừ (–).
+ Bỏ dấu ngoặc rồi thu gọn đa thức thu được.
Advertisements (Quảng cáo)
- Sử dụng kiến thức nhân hai đa thức để tính: Để nhân hai đa thức, ta lấy từng hạng tử của đa thức này nhân với đa thức kia, rồi cộng các kết quả lại.
- Sử dụng kiến thức nhân đơn thức với đa thức: Để nhân đơn thức với đa thức ta nhân đơn thức đó với từng hạng tử của đa thức, rồi cộng các kết quả với nhau.
a) \(ab\left( {3a - 2b} \right) - ab\left( {3b - 2a} \right) = 3{a^2}b - 2a{b^2} - 3a{b^2} + 2{a^2}b\)
\( = \left( {3{a^2}b + 2{a^2}b} \right) + \left( { - 3a{b^2} - 2a{b^2}} \right) = 5{a^2}b - 5a{b^2}\)
b) \(\left( {a - 4b} \right)\left( {a + 2b} \right) + a\left( {a + 2b} \right) = a\left( {a + 2b} \right) - 4b\left( {a + 2b} \right) + a\left( {a + 2b} \right)\)
\( = {a^2} + 2ab - 4ab - 8{b^2} + {a^2} + 2ab = \left( {{a^2} + {a^2}} \right) + \left( {2ab - 4ab + 2ab} \right) - 8{b^2} = 2{a^2} - 8{b^2}\)