Ở hình bên, độ dài các cạnh AB, BC và GH được cho theo a và b; hai cạnh CD và EF bằng nhau; ba cạnh AH, GF và ED bằng nhau.
a) Tìm độ dài các cạnh AH, GF, ED.
b) Tìm độ dài các cạnh CD, EF.
c) Tính chu vi của hình bên.
- Sử dụng kiến thức chia hai phân thức để tính: Muốn chia phân thức AB cho phân thức CD (C khác đa thức không), ta nhân phân thức AB với phân thức DC: AB:CD=AB.DC
- Sử dụng kiến thức cộng trừ hai đa thức để tính:
Advertisements (Quảng cáo)
+ Viết hai đa thức trong ngoặc nối với nhau bằng dấu cộng (+) hay trừ (–).
+ Bỏ dấu ngoặc rồi thu gọn đa thức thu được.
a) Ta có: AH=GF=ED=BC3=9a+12b3=3(3a+4b)3=3a+4b;
b) Ta có: CD=FE=AB−GH2=(6a+5b)−(2a+3b)2=4a+2b2=2(2a+b)2=2a+b
c) Chu vi của hình trên là:
AB+BC+CD+DE+FE+GF+GH+AH=AB+BC+AB+BC
=6a+5b+9a+12b+9a+12b+6a+5b
=(6a+6a+9a+9a)+(5b+12b+12b+5b)=30a+34b