Trang chủ Lớp 8 SBT Toán 8 - Chân trời sáng tạo Bài 8 trang 42 SBT Toán 8 – Chân trời sáng tạo...

Bài 8 trang 42 SBT Toán 8 - Chân trời sáng tạo tập 2: Cho tam giác ABC vuông tại A có MN//BC \(\left( {M \in AB, N \in AC} \right)\). Biết \(AB = 9cm...

Sử dụng kiến thức về định lí Thalès trong tam giác để tính. Phân tích và giải bài 8 trang 42 sách bài tập toán 8 - Chân trời sáng tạo tập 2 - Bài 1. Định lí Thalès trong tam giác. Cho tam giác ABC vuông tại A có MN//BC \(\left( {M \in AB, N \in AC} \right)\). Biết \(AB = 9cm,...

Question - Câu hỏi/Đề bài

Cho tam giác ABC vuông tại A có MN//BC \(\left( {M \in AB,N \in AC} \right)\). Biết \(AB = 9cm,AM = 3cm,AN = 4cm\). Tính độ dài NC, MN, BC.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

+ Sử dụng kiến thức về định lí Thalès trong tam giác để tính: Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh đó các đoạn thẳng tương ứng tỉ lệ.

+ Sử dụng kiến thức về hệ quả định lí Thalès trong tam giác để tính: Nếu một đường thẳng cắt hai cạnh của một tam giác song song với cạnh thứ ba thì tạo ra một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh của tam giác đã cho.

Answer - Lời giải/Đáp án

Advertisements (Quảng cáo)

Ta có: \(MB = AB - AM = 6cm\)

Tam giác ABC có: MN//BC nên theo định lí Thalès trong tam giác ta có: \(\frac{{AM}}{{MB}} = \frac{{AN}}{{NC}}\),

suy ra: \(NC = \frac{{MB.AN}}{{AM}} = \frac{{6.4}}{3} = 8\left( {cm} \right)\)

Áp dụng định lí Pythagore vào tam giác AMN vuông tại A có: \(MN = \sqrt {A{M^2} + A{N^2}} = \sqrt {{3^2} + {4^2}} = 5\left( {cm} \right)\)

Tam giác ABC có: MN//BC nên theo hệ quả định lí Thalès trong tam giác ta có: \(\frac{{AM}}{{AB}} = \frac{{MN}}{{BC}}\),

suy ra: \(BC = \frac{{AB.MN}}{{AM}} = \frac{{9.5}}{3} = 15\left( {cm} \right)\)

Advertisements (Quảng cáo)