Trang chủ Lớp 8 SGK Toán 8 - Cánh diều Bài 1 trang 16 Toán 8 tập 1 – Cánh diều: Thực...

Bài 1 trang 16 Toán 8 tập 1 - Cánh diều: Thực hiện phép tính...

Thực hiện các quy tắc nhân đơn thức với đa thức, nhân đa thức với đa thức rồi thực hiện các phép tính. Giải và trình bày phương pháp giải bài 1 trang 16 SGK Toán 8 tập 1 - Cánh diều Bài 2. Các phép tính với đa thức nhiều biến. Thực hiện phép tính...

Question - Câu hỏi/Đề bài

Thực hiện phép tính:

a) \(\left( { - xy} \right)\left( { - 2{{\rm{x}}^2}y + 3{\rm{x}}y - 7{\rm{x}}} \right)\)

b) \(\left( {\dfrac{1}{6}{x^2}{y^2}} \right)\left( { - 0,3{{\rm{x}}^2}y - 0,4{\rm{x}}y + 1} \right)\)

c) \(\left( {x + y} \right)\left( {{x^2} + 2{\rm{x}}y + {y^2}} \right)\)

d) \(\left( {x - y} \right)\left( {{x^2} - 2{\rm{x}}y + {y^2}} \right)\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Thực hiện các quy tắc nhân đơn thức với đa thức, nhân đa thức với đa thức rồi thực hiện các phép tính.

Answer - Lời giải/Đáp án

Advertisements (Quảng cáo)

a)

\(\begin{array}{l}\left( { - xy} \right)\left( { - 2{{\rm{x}}^2}y + 3{\rm{x}}y - 7{\rm{x}}} \right)\\ = \left( { - xy} \right).\left( { - 2{{\rm{x}}^2}y} \right) + \left( { - xy} \right)\left( {3{\rm{x}}y} \right) + \left( { - xy} \right).\left( { - 7{\rm{x}}} \right)\\ = 2{{\rm{x}}^3}{y^2} - 3{{\rm{x}}^2}{y^2} + 7{{\rm{x}}^2}y\end{array}\)

b)

\(\begin{array}{l}\left( {\dfrac{1}{6}{x^2}{y^2}} \right)\left( { - 0,3{{\rm{x}}^2}y - 0,4{\rm{x}}y + 1} \right)\\ = \left( {\dfrac{1}{6}{x^2}{y^2}} \right).\left( { - 0,3{{\rm{x}}^2}y} \right) + \left( {\dfrac{1}{6}{x^2}{y^2}} \right).\left( { - 0,4{\rm{x}}y} \right) + \left( {\dfrac{1}{6}{x^2}{y^2}} \right).1\\ = - \dfrac{1}{{20}}{x^4}{y^3} - \dfrac{1}{{15}}{x^3}{y^3} + \dfrac{1}{6}{x^2}{y^2}\end{array}\)

c)

\(\begin{array}{l}\left( {x + y} \right)\left( {{x^2} + 2{\rm{x}}y + {y^2}} \right)\\ = x.{x^2} + x.2{\rm{x}}y + x.{y^2} + y.{x^2} + y.2{\rm{x}}y + y.{y^2}\\ = {x^3} + 2{{\rm{x}}^2}y + x{y^2} + {x^2}y + 2{\rm{x}}{y^2} + {y^3}\\ = {x^3} + 3{{\rm{x}}^2}y + 3{\rm{x}}{y^2} + {y^3}\end{array}\)

d)

\(\begin{array}{l}\left( {x - y} \right)\left( {{x^2} - 2{\rm{x}}y + {y^2}} \right)\\ = x.{x^2} + x.\left( { - 2{\rm{x}}y} \right) + x.{y^2} + \left( { - y} \right).{x^2} + \left( { - y} \right).\left( { - 2{\rm{x}}y} \right) + \left( { - y} \right).{y^2}\\ = {x^3} - 2{{\rm{x}}^2}y + x{y^2} - {x^2}y + 2{\rm{x}}{y^2} - {y^3}\\ = {x^3} - 3{{\rm{x}}^2}y + 3{\rm{x}}{y^2} - {y^3}\end{array}\)

Advertisements (Quảng cáo)