Trang chủ Lớp 8 SGK Toán 8 - Cánh diều Bài 4 trang 48 Toán 8 tập 1 – Cánh diều: Chứng...

Bài 4 trang 48 Toán 8 tập 1 - Cánh diều: Chứng minh giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến...

Sử dụng các phép nhân, chia phân thức đại số để tính toán các biểu thức đại số về kết quả không chưa các biến. Lời giải bài tập, câu hỏi bài 4 trang 48 SGK Toán 8 tập 1 - Cánh diều Bài 3. Phép nhân - phép chia phân thức đại số. Chứng minh giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến...

Question - Câu hỏi/Đề bài

Chứng minh giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến:

a) \(A = \left( {\frac{1}{{x - 1}} + \frac{1}{{x + 1}}} \right)\left( {x - \frac{1}{x}} \right)\);

b) \(B = \left( {\dfrac{x}{{xy - {y^2}}} + \dfrac{{2{\rm{x}} - y}}{{xy - {x^2}}}} \right).\dfrac{{{x^2}y - x{y^2}}}{{{{\left( {x - y} \right)}^2}}}\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Sử dụng các phép nhân, chia phân thức đại số để tính toán các biểu thức đại số về kết quả không chưa các biến.

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

\(\begin{array}{l}a) A = \left( {\frac{1}{{x - 1}} + \frac{1}{{x + 1}}} \right)\left( {x - \frac{1}{x}} \right)\\ = \left( {\frac{{x + 1 + x - 1}}{{{x^2} - 1}}} \right).\left( {\frac{{{x^2} - 1}}{x}} \right)\\ = \frac{{2x}}{{{x^2} - 1}}.\frac{{{x^2} - 1}}{x} = \frac{{2x.\left( {{x^2} - 1} \right)}}{{x\left( {{x^2} - 1} \right)}} = 2\end{array}\)

Vậy A = 2 không phụ thuộc vào giá trị của các biến

\(\begin{array}{l}b) B = \left( {\dfrac{x}{{xy - {y^2}}} + \dfrac{{2{\rm{x}} - y}}{{xy - {x^2}}}} \right).\dfrac{{{x^2}y - x{y^2}}}{{{{\left( {x - y} \right)}^2}}}\\= \dfrac{x}{{y\left( {x - y} \right)}}.\dfrac{{{x^2}y - x{y^2}}}{{{{\left( {x - y} \right)}^2}}} + \dfrac{{2{\rm{x}} - y}}{{x\left( {y - x} \right)}}.\dfrac{{{x^2}y - x{y^2}}}{{{{\left( {x - y} \right)}^2}}}\\= \dfrac{x}{{y\left( {x - y} \right)}}.\dfrac{{xy\left( {x - y} \right)}}{{{{\left( {x - y} \right)}^2}}} + \dfrac{{2{\rm{x}} - y}}{{ - x\left( {x - y} \right)}}.\dfrac{{xy\left( {x - y} \right)}}{{{{\left( {x - y} \right)}^2}}}\\= \dfrac{{{x^2}}}{{{{\left( {x - y} \right)}^2}}} - \dfrac{{\left( {2{\rm{x}} - y} \right)y}}{{{{\left( {x - y} \right)}^2}}}\\= \dfrac{{{x^2} - \left( {2{\rm{x}} - y} \right)y}}{{{{\left( {x - y} \right)}^2}}} = \dfrac{{{x^2} - 2{\rm{x}}y + {y^2}}}{{{{\left( {x - y} \right)}^2}}} = \dfrac{{{{\left( {x - y} \right)}^2}}}{{{{\left( {x - y} \right)}^2}}} = 1\end{array}\)

Vậy B = 1 không phụ thuộc vào giá trị của biến x

Advertisements (Quảng cáo)