Trang chủ Lớp 8 SGK Toán 8 - Cánh diều Bài 4 trang 82 Toán 8 – Cánh diều: Cho Hình 77,...

Bài 4 trang 82 Toán 8 – Cánh diều: Cho Hình 77, chứng minh \(\widehat {ABC} = \widehat {BED}\) \(BC \bot BE\) Hình 77...

Phân tích và lời giải bài 4 trang 82 SGK Toán 8 – Cánh diều Bài 7. Trường hợp đồng dạng thứ hai của tam giác. Cho Hình 77, chứng minh \(\widehat {ABC} = \widehat {BED}\) \(BC \bot BE\) Hình 77 :

Question - Câu hỏi/Đề bài

Cho Hình 77, chứng minh

a) \(\widehat {ABC} = \widehat {BED}\)

b) \(BC \bot BE\)

Hình 77

Method - Phương pháp giải/Hướng dẫn/Gợi ý

a) Chứng minh \(\Delta ABC \backsim \Delta DEB\) từ đó suy ra cặp góc bằng nhau.

b) Chứng minh \(\widehat {CBE} = 90^\circ \)

Answer - Lời giải/Đáp án

Advertisements (Quảng cáo)

a) Ta thấy \(\frac{{AB}}{{DE}} = \frac{2}{4} = \frac{1}{2};\,\,\frac{{AC}}{{DB}} = \frac{2,5}{5} = \frac{1}{2}\)

\( \Rightarrow \frac{{AB}}{{DE}} = \frac{{AC}}{{DB}}\)

Xét tam giác ABC và tam giác DEB có:

\(\frac{{AB}}{{DE}} = \frac{{AC}}{{DB}}\) và \(\widehat {CAB} = \widehat {BDE} = 90^\circ \)

\( \Rightarrow \Delta ABC \backsim \Delta DEB\) (c-g-c)

\( \Rightarrow \widehat {ABC} = \widehat {BED}\)

b) Vì \(\Delta ABC \backsim \Delta DEB\) nên \(\widehat {ACB} = \widehat {DBE}\)

Mà tam giác ABC vuông tại A nên \(\widehat {ACB} + \widehat {ABC} = 90^\circ \) hay \(\widehat {DBE} + \widehat {ABC} = 90^\circ \)

Ta thấy

\(\begin{array}{l}\widehat {DBE} + \widehat {CBE} + \widehat {ABC} = 180^\circ \\ \Rightarrow \widehat {CBE} + 90^\circ = 180^\circ \\ \Rightarrow \widehat {CBE} = 90^\circ \end{array}\)

Vậy \(BC \bot BE\).

Advertisements (Quảng cáo)