Trang chủ Lớp 8 SGK Toán 8 - Cánh diều Bài 5 trang 23 Toán 8 tập 1 – Cánh diều: Chứng...

Bài 5 trang 23 Toán 8 tập 1 - Cánh diều: Chứng minh giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến x...

Áp dụng các hằng đẳng thức đã học để rút gọn các biểu thức có giá trị là một số không chứa biến. Lời giải bài tập, câu hỏi bài 5 trang 23 SGK Toán 8 tập 1 - Cánh diều Bài 3. Hằng đẳng thức đáng nhớ. Chứng minh giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến x...

Question - Câu hỏi/Đề bài

Chứng minh giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến x:

a) \(C = {\left( {3{\rm{x}} - 1} \right)^2} + {\left( {3{\rm{x}} + 1} \right)^2} - 2\left( {3{\rm{x}} - 1} \right)\left( {3{\rm{x}} + 1} \right)\)

b) \(D = {\left( {x + 2} \right)^3} - {\left( {x - 2} \right)^3} - 12\left( {{x^2} + 1} \right)\)

c) \(E = \left( {x + 3} \right)\left( {{x^2} - 3{\rm{x}} + 9} \right) - \left( {x - 2} \right)\left( {{x^2} + 2{\rm{x}} + 4} \right)\)

d) \(G = \left( {2{\rm{x}} - 1} \right)\left( {4{{\rm{x}}^2} + 2{\rm{x}} + 1} \right) - 8\left( {x + 2} \right)\left( {{x^2} - 2{\rm{x}} + 4} \right)\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Áp dụng các hằng đẳng thức đã học để rút gọn các biểu thức có giá trị là một số không chứa biến.

Answer - Lời giải/Đáp án

a) Ta có:

\(\begin{array}{l}C = {\left( {3{\rm{x}} - 1} \right)^2} + {\left( {3{\rm{x}} + 1} \right)^2} - 2\left( {3{\rm{x}} - 1} \right)\left( {3{\rm{x}} + 1} \right)\\C = {\left( {3{\rm{x}} - 1} \right)^2} - 2\left( {3{\rm{x}} - 1} \right)\left( {3{\rm{x}} + 1} \right) + {\left( {3{\rm{x}} + 1} \right)^2}\\C = {\left( {3{\rm{x}} - 1 - 3{\rm{x}} - 1} \right)^2}\\C = {\left( { - 2} \right)^2} = 4\end{array}\)

Advertisements (Quảng cáo)

Vậy giá trị của biểu thức C = 4 không phụ thuộc vào biến x

b) Ta có:

\(\begin{array}{l}D = {\left( {x + 2} \right)^3} - {\left( {x - 2} \right)^3} - 12\left( {{x^2} + 1} \right) \\D = \left( {x + 2 - x + 2} \right)\left[ {{{\left( {x + 2} \right)}^2} + \left( {x + 2} \right)\left( {x - 2} \right) + {{\left( {x - 2} \right)}^2}} \right] - 12{{\rm{x}}^2} - 12\\D = 4.\left( {{x^2} + 4{\rm{x}} + 4 + {x^2} - 4 + {x^2} - 4{\rm{x}} + 4} \right) - 12{{\rm{x}}^2} - 12\\D = 4.\left( {3{{\rm{x}}^2} + 4} \right) - 12{{\rm{x}}^2} - 12\\D = 12{{\rm{x}}^2} + 16 - 12{{\rm{x}}^2} - 12 = 4\end{array}\)

Vậy giá trị của biểu thức D = 4 không phụ thuộc vào biến x

c) Ta có:

\(\begin{array}{l}E = \left( {x + 3} \right)\left( {{x^2} - 3{\rm{x}} + 9} \right) - \left( {x - 2} \right)\left( {{x^2} + 2{\rm{x}} + 4} \right)\\E = \left( {{x^3} + {3^3}} \right) - \left( {{x^3} - {2^2}} \right)\\E = {x^3} + 27 - {x^3} + 8 = 35\end{array}\)

Vậy giá trị của biểu thức E = 35 không phụ thuộc vào biến x

d) Ta có:

\(\begin{array}{l}G = \left( {2{\rm{x}} - 1} \right)\left( {4{{\rm{x}}^2} + 2{\rm{x}} + 1} \right) - 8\left( {x + 2} \right)\left( {{x^2} - 2{\rm{x}} + 4} \right)\\G = \left[ {{{\left( {2{\rm{x}}} \right)}^3} - {1^3}} \right] - 8\left( {{x^3} + {2^3}} \right)\\G = 8{{\rm{x}}^3} - 1 - 8{{\rm{x}}^3} - 64 = - 65\end{array}\)

Vậy giá trị của biểu thức G = -65 không phụ thuộc vào biến x.

Advertisements (Quảng cáo)