Hoạt động 1
a) Viết biểu thức biểu thị:
- Diện tích của hình vuông có độ dài cạnh là x (cm)
- Diện tích hình chữ nhật có độ dài hai cạnh lần lượt là 2x (cm), 3y (cm)
- Thể tích của hình hộp chữ nhật có ba kích thước lần lượt là x (cm), 2y (cm), 3z (cm).
b) Cho biết mỗi biểu thức trên gồm những số, biến và phép tính nào.
Dựa vào các công thức tính diện tích hình vuông, diện tích hình chữ nhật và thể tích hình hộp chữ nhật để viết biểu thức khi biết độ dài các cạnh.
a) – Biểu thức diện tích của hình vuông có độ dài cạnh là x (cm): \(x.x\left( {c{m^2}} \right)\)
- Biểu thức diện tích hình chữ nhật có độ dài hai cạnh lần lượt là 2x (cm), 3y (cm): \(2{\rm{x}}.3y = 6{\rm{x}}y\left( {c{m^2}} \right)\)
- Biểu thức thể tích của hình hộp chữ nhật có ba kích thước lần lượt là x (cm), 2y (cm), 3z (cm): \(x.2y.3{\rm{z}} = 6{\rm{x}}yz\left( {c{m^3}} \right)\)
b) - Biểu thức: \(x.x\left( {c{m^2}} \right)\) có số là 1; biến: x; phép tính nhân
- Biểu thức \(2{\rm{x}}.3y = 6{\rm{x}}y\left( {c{m^2}} \right)\) có số là: 6; biến: x, y; phép tính nhân
- Biểu thức: \(x.2y.3{\rm{z}} = 6{\rm{x}}yz\left( {c{m^3}} \right)\) có số là: 6; biến: x, y, z và phép tính nhân
Luyện tập 1
Trong các biểu thức sau, biểu thức nào là đơn thức: \(5y;y + 3{\rm{z}};\dfrac{1}{2}{x^3}{y^2}{x^2}z\)
Xem xét những biểu thức chỉ gồm một số hoặc một biến hoặc một tích giữa các số và biến là các đơn thức.
Những biểu thức là đơn thức là: \(5y;\dfrac{1}{2}{x^3}{y^2}{x^2}z\).
Hoạt động 2
Xét đơn thức \(2{{\rm{x}}^3}{y^4}\). Trong các đơn thức này, biến x, y được viết bao nhiêu lần dưới dạng một lũy thừa với số mũ nguyên dương.
Đếm các biến x, y bao nhiêu lần xuất hiện dưới dạng lũy thừa với số mũ nguyên dương.
Đơn thức \(2{{\rm{x}}^3}{y^4}\) các biến x, y được viết một lần dưới dạng lũy thừa với số mũ nguyên dương.
Luyện tập 2
Thu gọn mỗi đơn thức sau: \({y^3}{y^2}z\);\(\dfrac{1}{3}x{y^2}{x^3}z\)
Ta thu gọn đơn thức bằng cách thực hiện phép nhân lũy thừa cùng cơ số đối với biến
\({y^3}{y^2}z = {y^5}z\)
\(\dfrac{1}{3}x{y^2}{x^3}z = \dfrac{1}{3}{x^4}{y^2}z\)
Hoạt động 3
Advertisements (Quảng cáo)
Cho hai đơn thức: \(2{{\rm{x}}^3}{y^4}\) và \( - 3{{\rm{x}}^3}{y^4}\)
a) Nêu hệ số của mỗi đơn thức trên.
b) So sánh phần biến của hai đơn thức trên
Hệ số là các số khác 0
a) Đơn thức: \(2{{\rm{x}}^3}{y^4}\) có hệ số là 2
Đơn thức: \( - 3{{\rm{x}}^3}{y^4}\) có hệ số là -3
b) Hai đơn thức \(2{{\rm{x}}^3}{y^4}\) và \( - 3{{\rm{x}}^3}{y^4}\) có cùng phần biến là: \({{\rm{x}}^3}{y^4}\)
Luyện tập 3
Các đơn thức trong mỗi trường hợp sau có đồng dạng hay không? Vì sao?
a) \({x^2}{y^4}; - 3{{\rm{x}}^2}{y^4}\) và \(\sqrt 5 {x^2}{y^4}\)
b) \( - {x^2}{y^2}{z^2}\) và \( - 2{{\rm{x}}^2}{y^2}{z^3}\)
Chỉ ra các đơn thức có hệ số khác 0 và có cùng phần biến
a) Những đơn thức \({x^2}{y^4}; - 3{{\rm{x}}^2}{y^4}\) và \(\sqrt 5 {x^2}{y^4}\) có hệ số khác 0 và có cùng phần biến nên chúng là những đơn thức đồng dạng.
b) Những đơn thức \( - {x^2}{y^2}{z^2}\) và \( - 2{{\rm{x}}^2}{y^2}{z^3}\)không có cùng phần biến nên chúng không phải là hai đơn thức đồng dạng.
Hoạt động 4
a) Tính tổng: \(5{{\rm{x}}^3} + 8{{\rm{x}}^3}\)
b) Tính hiệu \(10y^7 - 15y^7\)
Quy tắc cộng (hay trừ) hai đơn thức có cùng số mũ của biến là: cộng (hay trừ) các hệ số với nhau và giữ nguyên phần biến.
a) \(5{{\rm{x}}^3} + 8{{\rm{x}}^3} = (5 + 8){x^3} = 13{{\rm{x}}^3}\)
b) \(10y^7 - 15y^7 = (10 - 15)y^7 = -5y^7\)
Luyện tập 4
Thực hiện các phép tính:
\(a)4{{\rm{x}}^4}{y^6} + 2{{\rm{x}}^4}{y^6}\)
\(b)3{{\rm{x}}^3}{y^5} - 5{{\rm{x}}^3}{y^5}\)
Áp dụng quy tắc cộng (hay trừ) các đơn thức đồng dạng để thực hiện các phép tính.
\(a)4{{\rm{x}}^4}{y^6} + 2{{\rm{x}}^4}{y^6} = \left( {4 + 2} \right){x^4}{y^6} = 6{{\rm{x}}^4}{y^6}\)
\(b)3{{\rm{x}}^3}{y^5} - 5{{\rm{x}}^3}{y^5} = \left( {3 - 5} \right){x^3}{y^5} = - 2{{\rm{x}}^3}{y^5}\)