Hoạt động3
a) Tính số thích hợp vào ?: ;
b) Hãy nhắc lại tính chất cơ bản của phân số.
Vận dụng quy tắc để hai phân số bằng nhau.
b) Tính chất cơ bản của phân số như sau:
- Nếu nhân cả tử và mẫu của một phân số với cùng một số tự nhiên khác 0 thì được một phân số mới bằng phân số đã cho:
\(\dfrac{a}{b} = \dfrac{{a.c}}{{b.c}}\left( {c \ne 0} \right)\)
- Nếu chia cả tử và mẫu của một phân số cho cùng một số tự nhiên khác 0 thì ta cũng được phân số mới bằng phân số đã cho.
\(\dfrac{a}{b} = \dfrac{{a:d}}{{b:d}}\left( {d \ne 0} \right)\)
Luyện tập3
Dùng tính chất cơ bản của phân thức, hãy giải thích vì sao có thể viết: \(\dfrac{{3{\rm{x}} + y}}{y} = \dfrac{{3{\rm{x}}y + {y^2}}}{{{y^2}}}\)
Vận dụng các tính chất cơ bản của phân thức đại số để giải thích
\(\dfrac{{3{\rm{x}} + y}}{y} = \dfrac{{\left( {3{\rm{x}} + y} \right).y}}{{y.y}} = \dfrac{{3{\rm{x}}y + {y^2}}}{{{y^2}}}\) (y là đa thức khác đa thức 0)
Hoạt động4
Cho phân thức: \(\dfrac{{4{{\rm{x}}^2}y}}{{6{\rm{x}}{y^2}}}\)
a) Tìm nhân tử chung của tử và mẫu
b) Tìm phân thức nhận được sau khi chia cả tử và mẫu cho nhân tử chung đó.
Dùng phương pháp phân tích các đơn thức thành tích của các thừa số để tìm nhân tử chung.
a) Ta có: \(\dfrac{{4{{\rm{x}}^2}y}}{{6{\rm{x}}{y^2}}} = \dfrac{{2{\rm{x}}.2{\rm{x}}y}}{{3y.2{\rm{x}}y}}\)
Nhân tử chung của cả tử và mẫu là: 2xy
b) Chia cả tử và mẫu của phân thức đã cho cho nhân tử chung 2xy ta được:
\(\dfrac{{4{{\rm{x}}^2}y}}{{6{\rm{x}}{y^2}}} = \dfrac{{\left( {4{{\rm{x}}^2}y} \right):2{\rm{x}}y}}{{\left( {6{\rm{x}}{y^2}} \right):2{\rm{x}}y}} = \dfrac{{2{\rm{x}}}}{{3y}}\)
Luyện tập4
Rút gọn mỗi phân thức sau:
\(a)\dfrac{{8{{\rm{x}}^2} + 4{\rm{x}}}}{{1 - 4{{\rm{x}}^2}}}\) \(b)\dfrac{{{x^3} - x{y^2}}}{{2{{\rm{x}}^2} + 2{\rm{x}}y}}\)
Bước 1: Phân tử và mẫu thành nhân tử (nếu cần)
Advertisements (Quảng cáo)
Bước 2: Tìm nhân tử chung của cả tử và mẫu rồi chia cả tử và mẫu cho nhân tử chung đó.
\(a)\dfrac{{8{{\rm{x}}^2} + 4{\rm{x}}}}{{1 - 4{{\rm{x}}^2}}} = \dfrac{{4{\rm{x}}.\left( {2{\rm{x}} + 1} \right)}}{{\left( {1 - 2{\rm{x}}} \right).\left( {1 + 2{\rm{x}}} \right)}} = \dfrac{{4{\rm{x}}}}{{1 - 2{\rm{x}}}}\)
\(b)\dfrac{{{x^3} - x{y^2}}}{{2{{\rm{x}}^2} + 2{\rm{x}}y}} = \dfrac{{x\left( {{x^2} - {y^2}} \right)}}{{2{\rm{x}}\left( {x + y} \right)}} = \dfrac{{x\left( {x + y} \right)\left( {x - y} \right)}}{{2{\rm{x}}\left( {x + y} \right)}} = \dfrac{{x - y}}{2}\)
Hoạt động5
Cho hai phân thức \(\dfrac{1}{{{x^2}y}}\) và \(\dfrac{1}{{x{y^2}}}\)
a) Hãy nhân cả tử và mẫu của phân thức thứ nhất với y và nhân cả tử và mẫu của phân thức thứ hai với x.
b) Nhân xét gì về mẫu của hai phân thức thu được.
Thực hiện theo tính chất cơ bản của phân thức.
a) Ta có:
\(\dfrac{1}{{{x^2}y}} = \dfrac{{1.y}}{{{x^2}y.y}} = \dfrac{y}{{{x^2}{y^2}}}\)
\(\dfrac{1}{{x{y^2}}} = \dfrac{{1.x}}{{x{y^2}.x}} = \dfrac{x}{{{x^2}{y^2}}}\)
b) Mẫu của hai phân thức thu được giống nhau đều là: \({x^2}{y^2}\)
Luyện tập5
Quy đồng mẫu thức các phân thức trong mỗi trường hợp sau:
a) \(\dfrac{5}{{2{{\rm{x}}^2}{y^3}}}\) và \(\dfrac{3}{{x{y^4}}}\)
b) \(\dfrac{3}{{2{{\rm{x}}^2} - 10{\rm{x}}}}\) và \(\dfrac{2}{{{x^2} - 25}}\)
Bước 1: Phân tích mẫu của mỗi phân thức rồi tìm MTC.
Bước 2: Tìm nhân tử phụ của mỗi phân thức (Bằng cách chia MTC cho từng mẫu)
Bước 3: Nhân cả tử và mẫu của mỗi phân thức đã cho với nhân tử phụ tương ứng.
a) MTC chọn là: \(2{{\rm{x}}^2}{y^4}\)
Nhân tử phụ của \(\dfrac{5}{{2{{\rm{x}}^2}{y^3}}}\) và \(\dfrac{3}{{x{y^4}}}\) lầm lượt là: y; 2x
Vậy: \(\begin{array}{l}\dfrac{5}{{2{{\rm{x}}^2}{y^3}}} = \dfrac{{5.y}}{{2{{\rm{x}}^2}{y^3}.y}} = \dfrac{{5y}}{{2{{\rm{x}}^2}{y^4}}}\\\dfrac{3}{{x{y^4}}} = \dfrac{{3.2{\rm{x}}}}{{x{y^4}.2{\rm{x}}}} = \dfrac{{6{\rm{x}}}}{{2{{\rm{x}}^2}{y^4}}}\end{array}\)
b) Ta có:
\(\begin{array}{l}\dfrac{3}{{2{{\rm{x}}^2} - 10{\rm{x}}}} = \dfrac{3}{{2{\rm{x}}\left( {x - 5} \right)}}\\\dfrac{2}{{{x^2} - 25}} = \dfrac{2}{{\left( {x - 5} \right)\left( {x + 5} \right)}}\end{array}\)
Chọn MTC là: \(2{\rm{x}}\left( {x - 5} \right)\left( {x + 5} \right)\)
Nhân tử phụ của các mẫu thức trên lần lượt là: \(\left( {x + 5} \right);2{\rm{x}}\)
Vậy:
\(\begin{array}{l}\dfrac{3}{{2{{\rm{x}}^2} - 10{\rm{x}}}} = \dfrac{3}{{2{\rm{x}}\left( {x - 5} \right)}} = \dfrac{{3\left( {x + 5} \right)}}{{2{\rm{x}}.\left( {x - 5} \right)\left( {x + 5} \right)}}\\\dfrac{2}{{{x^2} - 25}} = \dfrac{2}{{\left( {x - 5} \right)\left( {x + 5} \right)}} = \dfrac{{2.2{\rm{x}}}}{{2{\rm{x}}\left( {x - 5} \right)\left( {x + 5} \right)}} = \dfrac{{4{\rm{x}}}}{{2{\rm{x}}\left( {x - 5} \right)\left( {x + 5} \right)}}\end{array}\)