Thực hiện các phép chia phân thức sau:
a) \(\dfrac{{5x}}{{4{y^3}}}:\left( { - \dfrac{{{x^4}}}{{20y}}} \right)\)
b) \(\dfrac{{{x^2} - 16}}{{x + 4}} :\dfrac{{2x - 8}}{x}\)
c) \(\dfrac{{2x + 6}}{{{x^3} - 8}}:\dfrac{{{{\left( {x + 3} \right)}^3}}}{{2x - 4}}\)
Thực hiện phân tích các đa thức ở tử và mẫu thành nhân tử (nếu cần thiết), sau đó nhân phân thức thứ nhất với nghịch đảo của phân thức thứ hai rồi thực hiện rút gọn.
Advertisements (Quảng cáo)
a)
\(\dfrac{{5x}}{{4{y^3}}}:\left( { - \dfrac{{{x^4}}}{{20y}}} \right)\) \( = \dfrac{{5x}}{{4{y^3}}} \cdot \dfrac{{ - 20y}}{{{x^4}}} = \dfrac{{ - 100xy}}{{4{x^4}{y^3}}} = \dfrac{{ - 25}}{{{x^3}{y^2}}}\)
b)
\(\dfrac{{{x^2} - 16}}{{x + 4}} :\dfrac{{2x - 8}}{x}\) \( = \dfrac{{\left( {x - 4} \right)\left( {x + 4} \right)}}{{x + 4}} \cdot \dfrac{x}{{2x - 8}} = \dfrac{{\left( {x - 4} \right)\left( {x + 4} \right)}}{{x + 4}} \cdot \dfrac{x}{{2\left( {x - 4} \right)}} = \dfrac{x}{2}\)
c)
\(\dfrac{{2x + 6}}{{{x^3} - 8}}:\dfrac{{{{\left( {x + 3} \right)}^3}}}{{2x - 4}}\) \( = \dfrac{{2\left( {x + 3} \right)}}{{\left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right)}} \cdot \dfrac{{2\left( {x - 2} \right)}}{{{{\left( {x + 3} \right)}^3}}} = \dfrac{4}{{{{\left( {x + 3} \right)}^2}\left( {{x^2} + 2x + 4} \right)}}\)