Sử dụng quy tắc chia đa thức cho đơn thức, quy tắc nhân hai đơn thức để tìm đơn thức E. Gợi ý giải Giải bài 10 trang 25 vở thực hành Toán 8 - Bài tập cuối chương I . Tìm đơn thức E, biết rằng (left( {6{x^2}{y^3};-E} right):2xy = 3x{y^2}; + ;;frac{1}{3}{x^2}y).
Câu hỏi/bài tập:
Tìm đơn thức E, biết rằng \(\left( {6{x^2}{y^3}\;-E} \right):2xy = 3x{y^2}\; + \;\;\frac{1}{3}{x^2}y\).
Sử dụng quy tắc chia đa thức cho đơn thức, quy tắc nhân hai đơn thức để tìm đơn thức E.
Advertisements (Quảng cáo)
Ta có \(\left( {6{x^2}{y^3}\;-E} \right):2xy = \left( {6{x^2}{y^3}\;:2xy} \right)-\left( {E:2xy} \right) = 3x{y^2}\;-\left( {E:2xy} \right)\).
So sánh kết quả với thương đã cho của phép chia, ta suy ra \(E:2xy = - \frac{1}{3}{x^2}y\).
Vậy \(E = 2xy.\left( { - \frac{1}{3}{x^2}y} \right) = - \frac{2}{3}{x^3}{y^2}.\)