Câu hỏi/bài tập:
Chứng minh đẳng thức sau:
\(\left( {2x + y} \right)\left( {2{x^2}\; + xy-{y^2}} \right) = \left( {2x-y} \right)\left( {2{x^2}\; + 3xy + {y^2}} \right)\).
Sử dụng quy tắc nhân hai đa thức: Muốn nhân một đa thức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.
Advertisements (Quảng cáo)
Vế trái:
\(\begin{array}{l}\left( {2x + y} \right)\left( {2{x^2}\; + xy-{y^2}} \right)\\ = \left( {4{x^3}\; + 2{x^2}y-2x{y^2}\;} \right) + \left( {2{x^2}y + x{y^2}\;-{y^3}} \right)\\ = 4{x^3}\; + 4{x^2}y-x{y^2}\;-{y^3}.\end{array}\)
Vế phải:
\(\begin{array}{l}\left( {2x-y} \right)\left( {2{x^2}\; + 3xy + {y^2}} \right)\\ = \left( {4{x^3}\; + 6{x^2}y + 2x{y^{2\;}}} \right)-\left( {2{x^2}y + 3x{y^2}\; + {y^3}} \right)\\ = 4{x^3}\; + \left( {6{x^2}y-2{x^2}y} \right) + \left( {2x{y^{2\;}}-3x{y^2}} \right)-{y^3}\\ = 4{x^3}\; + 4{x^2}y-x{y^2}\;-{y^3}.\end{array}\)
So sánh hai kết quả, ta có điều phải chứng minh.