Câu hỏi/bài tập:
Rút gọn biểu thức
\(\frac{1}{4}\left( {2{x^2} + y} \right)\left( {x - 2{y^2}} \right) + \frac{1}{4}\left( {2{x^2} - y} \right)\left( {x + 2{y^2}} \right).\)
Sử dụng giả thiết để viết đa thức biểu thị số tiền bà Khanh phải trà cho tổng số hộp sữa đã mua.
Advertisements (Quảng cáo)
Đặt \(P = (2{x^2} + y)(x - 2{y^2})\) và \(Q = \left( {2{x^2} - y} \right)\left( {x + 2{y^2}} \right)\) .
Khi đó biểu thức đã cho có dạng: \(\frac{1}{4}P + \frac{1}{4}Q = \frac{1}{4}(P + Q)\) .
Ta lần lượt tính P, Q và P + Q:
\(\begin{array}{l}P = \left( {2{x^2} + y} \right)\left( {x - 2{y^2}} \right) = 2{x^3} - 4{x^2}{y^2} + xy - 2{y^3}.\\Q = (2{x^2} - y)(x + 2{y^2}) = 2{x^3} + 4{x^2}{y^2} - xy - 2{y^3}.\\P + Q = 2{x^3} - 4{x^2}{y^2} + xy - 2{y^3} + 2{x^3} + 4{x^2}{y^2} - xy - 2{y^3} = 4{x^3} - 4{y^3}\end{array}\)
Vậy kết quả cuối cùng là
\(\frac{1}{4}\left( {P + Q} \right) = \frac{1}{4}\left( {4{x^3} - 4{y^3}} \right) = {x^3} - {y^3}.\)