a), b) Áp dụng hằng đẳng thức a2−b2=(a−b)(a+b) và quy tắc về căn. Trả lời Giải bài 14 trang 57 sách bài tập toán 9 - Cánh diều tập 1 - Bài 2. Một số phép tính về căn bậc hai của số thực . Rút gọn biểu thức: a) √132−122225 b) \(\frac{{\sqrt {{{\left( {6,2} \right)}^2} - {{\left( {5,
Câu hỏi/bài tập:
Rút gọn biểu thức:
a) √132−122225
b) √(6,2)2−(5,9)2√2,43
c) 2−√2√2
d) √6+2√5−2√5
a),b) Áp dụng hằng đẳng thức a2−b2=(a−b)(a+b) và quy tắc về căn bậc hai của một thương √ab=√a√b.
c) Nhóm nhân tử chung trên tử thức.
Advertisements (Quảng cáo)
d) Biến đổi 6+2√5 thành hằng đẳng thức.
a) √132−122225=√(13−12)(13+12)225
=√25225=√19=13.
b) √(6,2)2−(5,9)2√2,43=√(6,2−5,9)(6,2+5,9)√2,43
=√0,3.12,1√2,43=√3,632,43=√12181=119.
c) 2−√2√2=√2(√2−1)√2=√2−1.
d) √6+2√5−2√5
=√1+2.1.√5+(√5)2−2√5=√(1+√5)2−2√5=1+√5−2√5=1−√5.