Trang chủ Lớp 9 SBT Toán 9 - Cánh diều Bài 20 trang 88 SBT toán 9 – Cánh diều tập 1:...

Bài 20 trang 88 SBT toán 9 - Cánh diều tập 1: Một người đứng chào cờ (ở vị trí A) cách cột cờ (ở vị trí C) với AC = 20...

Bước 1: Chứng minh ABDC là hình chữ nhật để suy ra AC=BD=20m,AB=CD=1,5m Bước 2. Trả lời Giải bài 20 trang 88 sách bài tập toán 9 - Cánh diều tập 1 - Bài 3. Ứng dụng của tỉ số lượng giác của góc nhọn . Một người đứng chào cờ (ở vị trí A) cách cột cờ (ở vị trí C) với AC = 20

Câu hỏi/bài tập:

Question - Câu hỏi/Đề bài

Một người đứng chào cờ (ở vị trí A) cách cột cờ (ở vị trí C) với AC = 20 m. Người đó đặt mắt tại vị trí B cách mặt đất một khoảng là AB = 1,5 m.

Người đó nhìn lên đỉnh cột cờ (ở vị trí E) theo phương BE tạo với phương nằm ngang BD một góc là ^EBD=32 (Hình 20). Tính chiều cao của cột cờ (làm tròn kết quả đến hàng đơn vị của mét).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Bước 1: Chứng minh ABDC là hình chữ nhật để suy ra AC=BD=20m,AB=CD=1,5m

Advertisements (Quảng cáo)

Bước 2: Tính ED.

Bước 3: EC=DC+ED.

Answer - Lời giải/Đáp án

Xét ABDC có ^BAC=^ACD=^ADC=90 nên ABDC là hình chữ nhật,

suy ra AC=BD=20m,AB=CD=1,5m.

Xét tam giác BED vuông tại B, ta có tan^EBD=EDDB hay ED=DB.tan^EBD=20.tan32.

Chiều cao cột cờ là EC=DC+ED=1,5+20.tan3214m.

Advertisements (Quảng cáo)