Trang chủ Lớp 9 SBT Toán 9 - Cánh diều Bài 55 trang 124 SBT toán 9 – Cánh diều tập 1:...

Bài 55 trang 124 SBT toán 9 - Cánh diều tập 1: Cho nửa đường tròn tâm O đường kính AB. Gọi C...

Bước 1: Tính số đo các cung CB, CA, CD, AD và từ đó tính được số đo các góc ABC, CAB, COD. Giải và trình bày phương pháp giải Giải bài 55 trang 124 sách bài tập toán 9 - Cánh diều tập 1 - Bài tập cuối chương V . Cho nửa đường tròn tâm O đường kính AB. Gọi C,

Câu hỏi/bài tập:

Question - Câu hỏi/Đề bài

Cho nửa đường tròn tâm O đường kính AB. Gọi C, D lần lượt là điểm chính giữa của cung AB, AC.

a) Chứng minh ^BAC=^COD=^ABC=^ACO.

b) Lấy điểm M thuộc cung CD. Chứng minh AM>CM^COM=2^CAM.

c) Khi M di chuyển trên cung nhỏ AC, tìm vị trí của điểm M để diện tích của tam giác MAC lớn nhất.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

a) Bước 1: Tính số đo các cung CB, CA, CD, AD và từ đó tính được số đo các góc ABC, CAB, COD.

Bước 2: Tính góc ACO (tổng 3 góc trong tam giác ACO).

b) Bước 1: So sánh số đo cung AM và CM, từ đó suy ra ^ACM>^CAM.

Bước 2: Dựa vào mỗi quan hệ giữ góc và cạnh đối diện trong tam giác ACM để so sánh AM, CM.

c) Biểu diễn diện tích tam giác MAC: S=12AC.MN

Ta dự đoán diện tích tam giác MAC khi M là điểm chính giữa của cung AC nên ta chứng minh MNDK.

Answer - Lời giải/Đáp án

Gọi K là giao điểm của AC và OD, kẻ MN vuông góc với AC tại N.

a) Vì C điểm chính giữa của cung AB nên CB=CA=12AB=12.180=90 (do AB là cung chắn nửa đường tròn nên có số đo là 180⁰),

Advertisements (Quảng cáo)

Suy ra ^BAC=^ABC=902=45(do ^BAC^ABClà các góc nội chắn các cung bằng nhau) (1) và ^COA=90(góc ở tâm chắn cung AC).

Do D là điểm chính giữa của cung AC nên AD=DC=12AC=12.90=45

Suy ra ^COD=45 (do ^COD là góc ở tâm chắc cung DC)(2)

Xét tam giác ABC có: ^ACO=180^CAO^COA=1804590=45 (3)

Từ (1), (2), (3) suy ra ^BAC=^COD=^ABC=^ACO(=45).

b) Do M thuộc cung nhỏ DC và AD=DC=45, mà AM=AD+sđDM=45+sđDM

Nên AM>45CMCM hay ^ACM>^CAM

Xét tam giác ACM có ^ACM>^CAM nên AM>CM.

Xét (O) có: ^CAM là góc nội tiếp chắn cung CM nên ^CAM=12CM; ^COM là góc ở tâm chắn cung CM nên ^COM=sđCM. Do đó ^COM=2^CAM.

c) Diện tích tam giác MAC là S=12AC.MN.

Mà AC cố định nên S lớn nhất khi MN lớn nhất.

Do AD=DC nên ^COD=^AOD ( do đây là 2 góc ở tâm chắn 2 cung bằng nhau của (O)) nên OD (hay OK) là tia phân giác của góc COA.

Mặt khác AO=CO (cũng bằng bán kính (O)) nên tam giác ACO cân tại O, do đó đường phân giác OK đồng thời là đường cao, hay OKAC.

Ta lại có MN+OKOMOM=OD=DK+OK nên MNDK.

Do DK không đổi nên MN lớn nhất khi MN=DK hay M là điểm chính giữa cung AC.

Vậy diện tích ΔMAClớn nhất bằng 12AC.DK khi M là điểm chính giữa cung nhỏ AC.

Advertisements (Quảng cáo)