Cho biểu thức P = \(\left( {\frac{{\sqrt a + 1}}{{\sqrt a - 1}} - \frac{{\sqrt a - 1}}{{\sqrt a + 1}} + \frac{{4 + 4a}}{{1 - {a^2}}}} \right)\left( {\sqrt a - \frac{1}{{\sqrt a }}} \right)\) với a > 0, \(a \ne 1\).
a) Rút gọn biểu thức P.
b) Tìm giá trị của a để P = 2
Dựa vào: \(\frac{{\sqrt a }}{{\sqrt b }} = \frac{{\sqrt a .\sqrt b }}{{{{\left( {\sqrt b } \right)}^2}}} = \frac{{\sqrt {ab} }}{b}(a \ge 0,b > 0)\)
\(\sqrt {\frac{a}{b}} = \sqrt {\frac{{ab}}{{{b^2}}}} = \frac{{\sqrt {ab} }}{b}(a \ge 0,b > 0)\)
Advertisements (Quảng cáo)
a) P = \(\left( {\frac{{\sqrt a + 1}}{{\sqrt a - 1}} - \frac{{\sqrt a - 1}}{{\sqrt a + 1}} + \frac{{4 + 4a}}{{1 - {a^2}}}} \right)\left( {\sqrt a - \frac{1}{{\sqrt a }}} \right)\)
\( = \left[ {\frac{{a + 2\sqrt a + 1 - a + 2\sqrt a - 1}}{{a - 1}} + \frac{{4(1 + a)}}{{(1 - a)(1 + a)}}} \right].\frac{{a - 1}}{{\sqrt a }}\)
= \(\left( {\frac{{4\sqrt a }}{{a - 1}} + \frac{4}{{1 - a}}} \right).\frac{{a - 1}}{{\sqrt a }} = \frac{{4\sqrt a - 4}}{{a - 1}}.\frac{{a - 1}}{{\sqrt a }} = \frac{{4\sqrt a - 4}}{{\sqrt a }}.\)
b) Với P = \(\frac{{4\sqrt a - 4}}{{\sqrt a }}\)= 2, suy ra \(4\sqrt a - 4 = 2\sqrt a \) hay \(\sqrt a = 2\), suy ra a = 4.
Thử lại: Với a = 4, ta có P = \(\frac{{4\sqrt 4 - 4}}{{\sqrt 4 }} = 2\). Vậy a là giá trị cần tìm.