Dựa vào tính chất đối xứng của đường tròn để chứng minh. Giải chi tiết bài tập 3 trang 100 SGK Toán 9 tập 1 - Cánh diều Bài 1. Đường tròn. Vị trí tương đối của hai đường tròn. Cho đoạn thẳng \(MN\) và đường thẳng \(a\) là đường trung trực của đoạn thẳng \(MN\). Điểm \(O\) thuộc đường thẳng \(a\). a) Vẽ đường tròn tâm \(O\) bán kính \(R = OM\)...
Cho đoạn thẳng \(MN\) và đường thẳng \(a\) là đường trung trực của đoạn thẳng \(MN\). Điểm \(O\) thuộc đường thẳng \(a\).
a) Vẽ đường tròn tâm \(O\) bán kính \(R = OM\).
b) Chứng minh điểm \(N\) thuộc đường tròn \(\left( {O;R} \right)\).
Dựa vào tính chất đối xứng của đường tròn để chứng minh.
Advertisements (Quảng cáo)
a)
b) Do \(O\) thuộc đường trung trực của \(MN\) nên \(OM = ON\).
Lại có \(OM = R\) suy ra \(ON = R\).
Vậy điểm \(N\) thuộc đường tròn \(\left( {O;R} \right)\).