Dựa vào phép quay thuận chiều \({\alpha ^o}({0^o} < {\alpha ^o} < {360^o})\) tâm O giữ nguyên điểm O. Gợi ý giải Giải bài tập 9 trang 82 SGK Toán 9 tập 2 - Chân trời sáng tạo - Bài tập cuối chương 9 . Cho tam giác đều ABC có O là tâm đường tròn ngoại tiếp.
Câu hỏi/bài tập:
Cho tam giác đều ABC có O là tâm đường tròn ngoại tiếp. Phép quay nào với O là tâm biến tam giác ABC thành chính nó?
A. 90o.
B. 100o.
C. 110o.
Advertisements (Quảng cáo)
D. 120o.
Dựa vào phép quay thuận chiều \({\alpha ^o}({0^o} < {\alpha ^o} < {360^o})\) tâm O giữ nguyên điểm O, biến điểm M khác điểm O thành điểm M’ thuộc đường tròn (O;OM) sao cho khi tia OM quay thuận chiều kim đồng hồ đến tia OM’ thì điểm M tạo nên cung MM’ có số đo \({\alpha ^o}\). Định nghĩa tương tự cho phép quay ngược chiều \({\alpha ^o}\) tâm O. Phép quay \({0^o}\) hay \({360^o}\) giữ nguyên mọi điểm.
Ta có tam giác đều ABC có 3 đỉnh chia đường tròn tâm (O) thành 3 phần bằng nhau, số đo mỗi cung là: 360o : 3 = 120o.
Chọn đáp án D.