Câu hỏi/bài tập:
Cho lục giác đều ABCDEF có M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, DE, EF, FA. Đa giác MNPQRS có là đa giác đều không? Vì sao?
- Đọc kỹ dữ kiện đề bài để vẽ hình
- Dựa vào: Đa giác lồi có các cạnh bằng nhau và các góc bằng nhau gọi là đa giác đều.
Do ABCDEF là lục giác đều nên:
\(\widehat A = \widehat B = \widehat C = \widehat D = \widehat E = \widehat F = {120^o}\).
- AB = BC = CD = DE = EF = FA.
Vì M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, DE, EF, FA.
Suy ra AM = MB = BN = NC = CP = PD = DQ = QE = ER = RF = FS = SA.
Xét \(\Delta \) SAM và \(\Delta \) MBN có:
\(\widehat A = \widehat B\) (chứng minh trên);
AM = BN (chứng minh trên);
SA = MB (chứng minh trên).
Suy ra \(\Delta \) SAM = \(\Delta \) MBN (c – g – c).
Advertisements (Quảng cáo)
Do đó, SM = MN (hai cạnh tương ứng).
Chứng minh tương tự ta được: MN = NP, NP = PQ, QR = RS, RS = SM (1).
Vì AS = AM (chứng minh trên) suy ra \(\Delta \) ASM cân tại A.
suy ra \(\widehat {ASM} = \widehat {AMS}\) (tính chất tam giác cân)
Nên \(\widehat {ASM} = \widehat {AMS} = \frac{{{{180}^o} - \widehat A}}{2} = {30^o}\) (tổng 3 góc trong của tam giác).
Tương tự ta thu được:
\(\widehat {BMN} = \widehat {BNM} = \frac{{{{180}^o} - \widehat B}}{2} = 30\);
\(\widehat {CNP} = \widehat {CPN} = \frac{{{{180}^o} - \widehat C}}{2} = {30^o}\);
\(\widehat {DPQ} = \widehat {DQP} = \frac{{{{180}^o} - \widehat D}}{2} = {30^o}\);
\(\widehat {EQR} = \widehat {ERQ} = \frac{{{{180}^o} - \widehat E}}{2} = {30^o}\);.
\(\widehat {FRS} = \widehat {FSR} = \frac{{{{180}^o} - \widehat F}}{2} = {30^o}\)
Ta có:
\(\widehat {RSM} = {180^o} - \widehat {FRS} - \widehat {ASM} = {180^o} - {30^o} - {30^o} = {120^o}\)
Tương tự, ta được:
\(\widehat {AMN} = \widehat {MNP} = \widehat {NQP} = \widehat {PQR} = \widehat {QRS} = {120^o}\). (2)
Từ (1) và (2), suy ra MNPQRS là đa giác đều.