Trang chủ Lớp 9 SGK Toán 9 - Cùng khám phá Bài 3.22 trang 70 Toán 9 Cùng khám phá tập 1: Không...

Bài 3.22 trang 70 Toán 9 Cùng khám phá tập 1: Không dùng máy tính cầm tay, tính: a) \(\left( {2\sqrt[3]{{27}} - 5\sqrt[3]{{ - 216}}} \right). \sqrt[3]{{\frac{1}{{64}}}}\);b) \(2\sqrt[3]{{36}}...

Sử dụng công thức \(\sqrt[3]{{{a^3}}} = a\) để rút gọn \(\sqrt[3]{{27}}\), \(\sqrt[3]{{ - 216}}\), \(\sqrt[3]{{\frac{1}{{64}}}}\), từ đó tính giá trị biểu thức. Gợi ý giải bài tập 3.22 trang 70 SGK Toán 9 tập 1 - Cùng khám phá Bài 3. Căn bậc ba. Căn thức bậc ba. Không dùng máy tính cầm tay, tính: a) \(\left( {2\sqrt[3]{{27}} - 5\sqrt[3]{{ - 216}}} \right). \sqrt[3]{{\frac{1}{{64}}}}\);b) \(2\sqrt[3]{{36}}. 5\sqrt[3]{{48}}\)...

Question - Câu hỏi/Đề bài

Không dùng máy tính cầm tay, tính:

a) \(\left( {2\sqrt[3]{{27}} - 5\sqrt[3]{{ - 216}}} \right).\sqrt[3]{{\frac{1}{{64}}}}\);

b) \(2\sqrt[3]{{36}}.5\sqrt[3]{{48}}\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Advertisements (Quảng cáo)

a) Sử dụng công thức \(\sqrt[3]{{{a^3}}} = a\) để rút gọn \(\sqrt[3]{{27}}\), \(\sqrt[3]{{ - 216}}\), \(\sqrt[3]{{\frac{1}{{64}}}}\), từ đó tính giá trị biểu thức.

b) Sử dụng công thức \({\left( {\sqrt[3]{a}} \right)^3} = \sqrt[3]{{{a^3}}} = a\) và \(\sqrt[3]{a}.\sqrt[3]{b} = \sqrt[3]{{ab}}\) để rút gọn biểu thức.

Answer - Lời giải/Đáp án

a) \(\left( {2\sqrt[3]{{27}} - 5\sqrt[3]{{ - 216}}} \right).\sqrt[3]{{\frac{1}{{64}}}}\)\( = \left( {2\sqrt[3]{{{3^3}}} - 5\sqrt[3]{{{{\left( { - 6} \right)}^3}}}} \right).\sqrt[3]{{{{\left( {\frac{1}{4}} \right)}^3}}}\)\( = \left( {2.3 - 5.\left( { - 6} \right)} \right).\frac{1}{4}\)\( = 36.\frac{1}{4}\)\( = 9\);

b) \(2\sqrt[3]{{36}}.5\sqrt[3]{{48}}\)\( = 10\sqrt[3]{{36.48}}\)\( = 10\sqrt[3]{{{6^2}{{.6.2}^3}}}\)\( = 10\sqrt[3]{{{{\left( {6.2} \right)}^3}}}\)\( = 10.12\)\( = 120\).

Advertisements (Quảng cáo)