Xét phát biểu I: “Nếu a và b là hai số không âm bất kì thì \(\sqrt {a.b} = \sqrt a .\sqrt b \)” và phát biểu II: “Nếu a và b là hai số không âm bất kì thì \(\sqrt {a + b} = \sqrt a + \sqrt b \)”
Trong các khẳng định sau, khẳng định nào là đúng?
A. Cả hai phát biểu I và II đều đúng.
B. Cả hai phát biểu I và II đều sai.
C. Phát biểu I đúng và phát biểu II sai.
D. Phát biểu I sai và phát biểu II đúng.
Advertisements (Quảng cáo)
Nếu a và b là hai số không âm bất kì thì \(\sqrt {a.b} = \sqrt a .\sqrt b \).
Ta có: Nếu a và b là hai số không âm bất kì thì \(\sqrt {a.b} = \sqrt a .\sqrt b \).
Vì \(\sqrt {2 + 3} \ne \sqrt 2 + \sqrt 3 \) nên phát biểu II: “Nếu a và b là hai số không âm bất kì thì \(\sqrt {a + b} = \sqrt a + \sqrt b \)” sai.
Do đó, phát biểu I đúng và phát biểu II sai.
Chọn C