Trang chủ Lớp 9 SGK Toán 9 - Cùng khám phá Bài 6.8 trang 14 Toán 9 tập 2 – Cùng khám phá:...

Bài 6.8 trang 14 Toán 9 tập 2 - Cùng khám phá: Đưa các phương trình sau về dạng \(a{x^2} + bx + c = 0\) và chỉ rõ các hệ số...

Dựa vào phương trình \(a{x^2} + bx + c = 0\) với a, b,c là ba số đã cho và \(a \ne 0\). Hướng dẫn cách giải/trả lời bài tập 6.8 trang 14 SGK Toán 9 tập 2 - Cùng khám phá - Bài 2. Phương trình bậc hai một ẩn. Đưa các phương trình sau về dạng \(a{x^2} + bx + c = 0\) và chỉ rõ các hệ số a, b, c...

Question - Câu hỏi/Đề bài

Đưa các phương trình sau về dạng \(a{x^2} + bx + c = 0\) và chỉ rõ các hệ số a, b, c:

a) \({x^2} - x = 3x + 1\)

b) \(3{x^2} - 4x = \sqrt 2 {x^2} - 2\)

c) \({\left( {x + 1} \right)^2} = 2(x - 1)\)

d) \({x^2} - m = 2(m + 1)x\), m là một hằng số.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Dựa vào phương trình \(a{x^2} + bx + c = 0\) với a, b,c là ba số đã cho và \(a \ne 0\), được gọi là phương trình bậc hai một ẩn (ẩn số x) hay nói gọn là phương trình bậc hai.

Answer - Lời giải/Đáp án

a) \({x^2} - x = 3x + 1\)

\({x^2} - 4x - 1 = 0\)

Advertisements (Quảng cáo)

Hệ số a = 1, b = - 4, c = -1.

b) \(3{x^2} - 4x = \sqrt 2 {x^2} - 2\)

\(\left( {3 - \sqrt 2 } \right){x^2} - 4x + 2 = 0\)

Hệ số a = \(3 - \sqrt 2 \), b = - 4, c = 2.

c) \({\left( {x + 1} \right)^2} = 2(x - 1)\)

\(\begin{array}{l}{\left( {x + 1} \right)^2} = 2(x - 1)\\{x^2} + 2x + 1 - 2x + 2 = 0\\{x^2} + 3 = 0\end{array}\)

Hệ số a = 1, b = 0, c = 3.

d) \({x^2} - m = 2(m + 1)x\), m là một hằng số.

\({x^2} - (2m + 2)x - m = 0\)

Hệ số a = 1, b = \(2m + 2\), c = - m.

Advertisements (Quảng cáo)