Dùng MTCT thích hợp để tìm nghiệm của các hệ phương trình sau:
a) \(\left\{ \begin{array}{l}12x - 5y + 24 = 0\\ - 5x - 3y - 10 = 0;\end{array} \right.\)
b) \(\left\{ \begin{array}{l}\frac{1}{3}x - y = \frac{2}{3}\\x - 3y = 2;\end{array} \right.\)
c) \(\left\{ \begin{array}{l}3x - 2y = 1\\ - x + 2y = 0;\end{array} \right.\)
d) \(\left\{ \begin{array}{l}\frac{4}{9}x - \frac{3}{5}y = 11\\\frac{2}{9}x + \frac{1}{5}y = - 2.\end{array} \right.\)
Để tìm nghiệm của hệ phương trình ta cần đưa phương trình đề bài đã cho về dạng \(\left\{ \begin{array}{l}{a_1}x + {b_1}y = {c_1}\\{a_2}x + {b_2}y = {c_2}.\end{array} \right.\)
Chú ý: Nếu kết quả màn hình cho “Infinite Sol” nên hệ phương trình đã cho có vô số nghiệm.
Nếu kết quả báo “No- Solution” thì hệ phương trình đã cho vô nghiệm.
a) \(\left\{ \begin{array}{l}12x - 5y + 24 = 0\\ - 5x - 3y - 10 = 0;\end{array} \right.\)
Advertisements (Quảng cáo)
Bấm máy tính ta được kết quả \(x = - 2;y = 0.\)
Vậy nghiệm của hệ phương trình là \(\left( -2; 0 \right).\)
b) \(\left\{ \begin{array}{l}\frac{1}{3}x - y = \frac{2}{3}\\x - 3y = 2;\end{array} \right.\)
Bấm máy tính, màn hình hiển thị “Infinite Sol”.
Vậy hệ phương trình có vô số nghiệm có dạng \(\left(x; \frac{1}{3}x - \frac{2}{3}\right)\) với mọi \(x \in \mathbb{R}\)
c) \(\left\{ \begin{array}{l}3x - 2y = 1\\ - x + \frac{2}{3}y = 0;\end{array} \right.\)
Bấm máy tính ta được kết quả \(x = \frac{1}{2};y = \frac{1}{4}.\)
Vậy nghiệm của hệ phương trình là \(\left( {\frac{1}{2};\frac{1}{4}} \right).\)
d) \(\left\{ \begin{array}{l}\frac{4}{9}x - \frac{3}{5}y = 11\\\frac{2}{9}x + \frac{1}{5}y = - 2.\end{array} \right.\)
Bấm máy tính ta được kết quả \(x = \frac{9}{2};y = - 15.\)
Vậy nghiệm của hệ phương trình là \(\left( {\frac{9}{2}; - 15} \right).\)