Trang chủ Lớp 9 SGK Toán 9 - Kết nối tri thức Bài 1.9 trang 16 Toán 9 Kết nối tri thức tập 1:...

Bài 1.9 trang 16 Toán 9 Kết nối tri thức tập 1: Dùng MTCT thích hợp để tìm nghiệm của các hệ phương trình sau...

Để tìm nghiệm của hệ phương trình ta cần đưa phương trình đề bài đã cho về dạng \(\left\{ \begin{array}{l}{a_1}x + {b_1}y = {c_1}\\{a_2}x + {b_2}y = {c_2}.\end{array} \right. Gợi ý giải bài tập 1.9 trang 16 SGK Toán 9 tập 1 - Kết nối tri thức Bài 2. Giải hệ hai phương trình bậc nhất hai ẩn. Dùng MTCT thích hợp để tìm nghiệm của các hệ phương trình sau: a) (left{ begin{array}{l}12x - 5y + 24 = 0 - 5x - 3y - 10 = 0;end{array} right...

Question - Câu hỏi/Đề bài

Dùng MTCT thích hợp để tìm nghiệm của các hệ phương trình sau:

a) \(\left\{ \begin{array}{l}12x - 5y + 24 = 0\\ - 5x - 3y - 10 = 0;\end{array} \right.\)

b) \(\left\{ \begin{array}{l}\frac{1}{3}x - y = \frac{2}{3}\\x - 3y = 2;\end{array} \right.\)

c) \(\left\{ \begin{array}{l}3x - 2y = 1\\ - x + 2y = 0;\end{array} \right.\)

d) \(\left\{ \begin{array}{l}\frac{4}{9}x - \frac{3}{5}y = 11\\\frac{2}{9}x + \frac{1}{5}y = - 2.\end{array} \right.\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Để tìm nghiệm của hệ phương trình ta cần đưa phương trình đề bài đã cho về dạng \(\left\{ \begin{array}{l}{a_1}x + {b_1}y = {c_1}\\{a_2}x + {b_2}y = {c_2}.\end{array} \right.\)

Chú ý: Nếu kết quả màn hình cho “Infinite Sol” nên hệ phương trình đã cho có vô số nghiệm.

Nếu kết quả báo “No- Solution” thì hệ phương trình đã cho vô nghiệm.

Answer - Lời giải/Đáp án

a) \(\left\{ \begin{array}{l}12x - 5y + 24 = 0\\ - 5x - 3y - 10 = 0;\end{array} \right.\)

Advertisements (Quảng cáo)

Bấm máy tính ta được kết quả \(x = - 2;y = 0.\)

Vậy nghiệm của hệ phương trình là \(\left( -2; 0 \right).\)

b) \(\left\{ \begin{array}{l}\frac{1}{3}x - y = \frac{2}{3}\\x - 3y = 2;\end{array} \right.\)

Bấm máy tính, màn hình hiển thị “Infinite Sol”.

Vậy hệ phương trình có vô số nghiệm có dạng \(\left(x; \frac{1}{3}x - \frac{2}{3}\right)\) với mọi \(x \in \mathbb{R}\)

c) \(\left\{ \begin{array}{l}3x - 2y = 1\\ - x + \frac{2}{3}y = 0;\end{array} \right.\)

Bấm máy tính ta được kết quả \(x = \frac{1}{2};y = \frac{1}{4}.\)

Vậy nghiệm của hệ phương trình là \(\left( {\frac{1}{2};\frac{1}{4}} \right).\)

d) \(\left\{ \begin{array}{l}\frac{4}{9}x - \frac{3}{5}y = 11\\\frac{2}{9}x + \frac{1}{5}y = - 2.\end{array} \right.\)

Bấm máy tính ta được kết quả \(x = \frac{9}{2};y = - 15.\)

Vậy nghiệm của hệ phương trình là \(\left( {\frac{9}{2}; - 15} \right).\)

Advertisements (Quảng cáo)