Trang chủ Lớp 9 SGK Toán 9 - Kết nối tri thức Bài 3.20 trang 59 Toán 9 Kết nối tri thức tập 1:...

Bài 3.20 trang 59 Toán 9 Kết nối tri thức tập 1: Trục căn thức ở mẫu: a) \(\frac{{4 + 3\sqrt 5 }}{{\sqrt 5 }};\)b) \(\frac{1}{{\sqrt 5 - 2}};\)c) \(\frac{{3 + \sqrt...

Ta có \(\frac{A}{{\sqrt B }} = \frac{{A\sqrt B }}{B}\); \(\frac{C}{{\sqrt A + \sqrt B }} = \frac{{C\left( {\sqrt A - \sqrt B } \right)}}{{A - B}}\); \(\frac{C}{{\sqrt A. Gợi ý giải bài tập 3.20 trang 59 SGK Toán 9 tập 1 - Kết nối tri thức Bài 9. Biến đổi đơn giản và rút gọn biểu thức chứa căn thức bậc hai. Trục căn thức ở mẫu: a) \(\frac{{4 + 3\sqrt 5 }}{{\sqrt 5 }};\)b) \(\frac{1}{{\sqrt 5 - 2}};\)c) \(\frac{{3 + \sqrt 3 }}{{1 - \sqrt 3 }};\)d) \(\frac{{\sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}...

Question - Câu hỏi/Đề bài

Trục căn thức ở mẫu:

a) \(\frac{{4 + 3\sqrt 5 }}{{\sqrt 5 }};\)

b) \(\frac{1}{{\sqrt 5 - 2}};\)

c) \(\frac{{3 + \sqrt 3 }}{{1 - \sqrt 3 }};\)

d) \(\frac{{\sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}.\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Advertisements (Quảng cáo)

Ta có \(\frac{A}{{\sqrt B }} = \frac{{A\sqrt B }}{B}\); \(\frac{C}{{\sqrt A + \sqrt B }} = \frac{{C\left( {\sqrt A - \sqrt B } \right)}}{{A - B}}\); \(\frac{C}{{\sqrt A - B}} = \frac{{C\left( {\sqrt A + B} \right)}}{{\left( {\sqrt A - B} \right)\left( {\sqrt A + B} \right)}}\);\(\frac{C}{{A - \sqrt B }} = \frac{{C\left( {A - \sqrt B } \right)}}{{\left( {A - \sqrt B } \right)\left( {A + \sqrt B } \right)}}\)

Chú ý nếu biểu thức rút gọn được thì ta rút gọn trước khi trục căn thức.

Answer - Lời giải/Đáp án

a) \(\frac{{4 + 3\sqrt 5 }}{{\sqrt 5 }} = \frac{{\left( {4 + 3\sqrt 5 } \right)\sqrt 5 }}{{\sqrt 5 .\sqrt 5 }} = \frac{{4\sqrt 5 + 15}}{5}\)

b) \(\frac{1}{{\sqrt 5 - 2}} = \frac{{1.\left( {\sqrt 5 + 2} \right)}}{{\left( {\sqrt 5 - 2} \right)\left( {\sqrt 5 + 2} \right)}} = \frac{{\sqrt 5 + 2}}{{5 - 4}} = \sqrt 5 + 2\)

c) \(\frac{{3 + \sqrt 3 }}{{1 - \sqrt 3 }}\)\( = \frac{{\left( {3 + \sqrt 3 } \right)\left( {1 + \sqrt 3 } \right)}}{{\left( {1 - \sqrt 3 } \right)\left( {1 + \sqrt 3 } \right)}}\)\( = \frac{{3 + 3\sqrt 3 + 1\sqrt 3 + \sqrt {{3^2}} }}{{1 - 3}}\)\( = \frac{{7 + 4\sqrt 3 }}{{ - 2}}\)

d) \(\frac{{\sqrt 2 }}{{\sqrt 3 + \sqrt 2 }} = \frac{{\sqrt 2 \left( {\sqrt 3 - \sqrt 2 } \right)}}{{\left( {\sqrt 3 + \sqrt 2 } \right)\left( {\sqrt 3 - \sqrt 2 } \right)}} = \frac{{\sqrt 6 - 2}}{{3 - 2}} = \sqrt 6 - 2\)

Advertisements (Quảng cáo)