Trang chủ Lớp 10 SBT Toán 10 - Chân trời sáng tạo Bài 12 trang 15 SBT toán 10 Chân trời sáng tạo: Thiết...

Bài 12 trang 15 SBT toán 10 Chân trời sáng tạo: Thiết kế của một chiếc cổng có hình parabol với chiều cao 5 m và khoảng cách giữa ha...

Giải bài 12 trang 15 SBT toán 10 - Chân trời sáng tạo - Bài 2. Giải bất phương trình bậc hai một ẩn

Question - Câu hỏi/Đề bài

Thiết kế của một chiếc cổng có hình parabol với chiều cao 5 m và khoảng cách giữa hai chân cổng là 4 m.

a) Chọn trục hoành là đường thẳng nối hai chân cổng, gốc tọa độ tại một chân cổng, chân cổng còn lại có hoành độ dương, đơn vị là 1 m. Hãy viết phương trình của vòm cổng.

b) Người ta cần chuyền một thùng hàng hình hộp chữ nhật với chiều cao 3 m. Chiều rộng của thùng hàng tối đa là bao nhiêu để thùng có thể chuyển lọt qua được cổng?

Lưu ý: Đáp số làm tròn đến hàng phần trăm

Answer - Lời giải/Đáp án

a) Giả sử phương trình mô tả cổng có dạng y=ax2+bx+c

Từ cách đặt hệ trục ta có:

Advertisements (Quảng cáo)

 

+) Gốc tọa độ tại chân cổng nên 0=a.02+b.0+cc=0

+) Chân cổng còn lại có hoành độ bằng khoảng cách 2 chân cổng là 4 m nên 0=a.42+b.4+c16a+4b+c=0

+) Đỉnh cổng có tọa độ (2;5) nên 5=a.22+b.2+c4a+2b+c=5

Giải hệ phương trình lập được từ ba phương trình trên ta được a=54;b=5;c=0

Vậy phương trình vòm cổng là y=54x2+5x

b) Yêu cầu bài toán tương đương với tìm các giá trị của x để y3

54x2+5x354x2+5x30102105x10+2105

Suy ra chiều rộng tối đa mà thùng hàng có thể qua cổng là 10+2105102105=41052,53

Vậy chiều rộng tối ra của thùng hàng gần bằng 2,53 m

Advertisements (Quảng cáo)