Giải bài 2 trang 100 sách bài tập toán 10 - Chân trời sáng tạo - Bài 4. Tích vô hướng của hai vectơ
Cho hình chữ nhật ABCD có tâm O và cho AD=2a,AB=a. Tính:
a) →AB.→AO
b) →AB.→AD
Sử dụng công thức tính tích vô hướng →a1.→a2=|→a1|.|→a2|.cos(→a1,→a2)
Advertisements (Quảng cáo)
ABCD là hình chữ nhật có tâm O và AD=2a,AB=a nên ta có:
AO=12AC=a√52
Áp dụng định lí côsin ta tính được cos^OAB=AB2+AO2−OB22.AB.OA=a2+(a√52)2−(a√52)22a.a√52=√55
a)
→AB.→AO=|→AB|.|→AO|.cos(→AB,→AO)=AB.AO.cos^OAB=a.a√55.√55=a25
b)
→AB.→AD=|→AB|.|→AD|.cos(→AB,→AD)=AB.AD.cos^DAB=a.2a.cos90∘=0