Trang chủ Lớp 10 SBT Toán 10 - Chân trời sáng tạo Bài 4 trang 132 SBT Toán lớp 10 Chân trời sáng tạo:...

Bài 4 trang 132 SBT Toán lớp 10 Chân trời sáng tạo: Giá bán lúc 10h sáng của một mã cổ phiếu A trong 10 ngày liên tiếp được ghi lại ở bi...

Giải bài 4 trang 132 sách bài tập toán 10 - Chân trời sáng tạo - Bài tập cuối chương VI

Question - Câu hỏi/Đề bài

Giá bán lúc 10h sáng của một mã cổ phiếu A trong 10 ngày liên tiếp được ghi lại ở biểu đồ sau (đơn vị: nghìn đồng).

 

a) Viết mẫu số liệu thống kê giá của mã cổ phiếu A từ biểu đồ trên.

b) Tìm khoảng biến thiện, khoảng tứ phân vị của mẫu số liệu đó.

c) Tính trung bình, độ lệch chuẩn của mẫu số liệu trên.

Bước 1: Sắp xếp số liệu theo thứ tự không giảm: \({x_1},{x_2},...,{x_n}\)

Khoảng biến thiên \(R = {x_n} - {x_1}\)

Bước 2: Tìm trung vị \({Q_2}\) của mẫu số liệu

 Bằng \({x_m}\) nếu \(n = 2m - 1\); là \(\frac{1}{2}({x_m} + {x_{m + 1}})\) nếu \(n = 2m\)

Bước 3: Tìm tứ phân vị

Tính \({Q_1}\)là trung vị của nửa số liệu đã sắp xếp bên trái \({Q_2}\) (không bao gồm trung vị nếu n lẻ)

Tính \({Q_1}\)là trung vị của nửa số liệu đã sắp xếp bên phải \({Q_2}\) (không bao gồm trung vị nếu n lẻ)

Khoảng tứ phân vị: \(\Delta Q = {Q_3} - {Q_1}\)

 Tìm phương sai theo công thức \({S^2} = \frac{1}{n}\left( {{n_1}{x_1}^2 + {n_2}{x_2}^2 + ... + {n_k}{x_k}^2} \right) - {\overline x ^2}\)

Độ lệch chuẩn \(S = \sqrt {{S^2}} \)

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

a) Bảng thống kê

56,4

56,4

56,5

56,6

56,9

57,1

57,4

57,7

57,7

57,8

b)

+ Số cao nhất và thấp nhất lần lượt là 57,8 và 56,4 do đó khoảng biến thiên của dãy số liệu trên là: \(R = 57,8 - 56,4 = 1,4\)

+ Tứ phân vị: \({Q_2} = \left( {56,9 + 57,1} \right) = 57\); \({Q_1} = 56,5;{Q_3} = 57,7\)

c)

+ Trung bình của mẫu số liệu là \(\overline x  = 57,05\)

+ Phương sai: \({S^2} = 0,2916\)

+ Độ lệch chuẩn: \(S = \sqrt {{S^2}}  = 0,54\)

Advertisements (Quảng cáo)