Viết các tập hợp sau đây dưới dạng liệt kê các phần tử
a) \(A = \left\{ {y \in \mathbb{N}\left| {y = 10 - {x^2},x \in \mathbb{N}} \right.} \right\}\)
b) \(B = \left\{ {x \in \mathbb{N}\left| {\frac{6}{{6 - x}} \in \mathbb{N}} \right.} \right\}\)
c) \(C = \{ x \in \mathbb{N}| 2x - 3 \ge 0 \) và \(7 - x \ge 2 \}\)
d) \(D = \left\{ {\left( {x;y} \right)\left| {x \in \mathbb{N},y \in \mathbb{N},x + 2y = 8} \right.} \right\}\)
a) Vì y là số tự nhiên và \(y = 10 - {x^2} \Rightarrow 10 - {x^2} \ge 0 \Rightarrow x \le \sqrt {10} \)
Mà x cũng là số tự nhiên nên \(x = \left\{ {0;1;2;3} \right\}\) thay x vào \(y = 10 - {x^2}\)ta tìm được các giá trị y tương ứng là \(\left\{ {10;9;6;1} \right\}\)
Suy ra, \(A = \{ 10;9;6;1\}\)
b) Vì \(\frac{6}{{6 - x}}\) là số tự nhiên nên \(6 - x\) phải là số tự nhiên và là ước của 6
Suy ra \(6 - x = \left\{ {1;2;3;6} \right\}\) thay vào tìm x ta có \(B = \left\{ {0;3;4;5} \right\}\)
c) Ta có \(2x - 3 \ge 0 \Leftrightarrow x \ge \frac{3}{2}\)
\(7 - x \ge 2 \Leftrightarrow x \le 5\)
\(\Rightarrow C = \{ x \in \mathbb{N}| \frac{3}{2} \le x \le 5 \}\)
Advertisements (Quảng cáo)
Vậy \(C = \left\{ {2;3;4;5} \right\}\)
d) Từ phương trình \(x + 2y = 8\) ta có \(x = 8-2y\)
Ta có bảng
\(y\) |
0 |
1 |
2 |
3 |
4 |
\(x = 8 - 2y\) |
8 |
6 |
4 |
2 |
0 |
Suy ra \(D = \left\{ {\left( {8;0} \right),\left( {6;1} \right),\left( {4;2} \right),\left( {2;3} \right),\left( {0;4} \right)} \right\}\)