Trang chủ Lớp 10 SBT Toán 10 - Chân trời sáng tạo Bài 9 trang 13 SBT Toán 10 Chân trời sáng tạo: Cho...

Bài 9 trang 13 SBT Toán 10 Chân trời sáng tạo: Cho hai tập hợp (A = left{ {2k + 1left| {k in mathbb{Z}} right.} right}) v...

Giải bài 9 trang 13 sách bài tập toán 10 - Chân trời sáng tạo - Bài 2. Tập hợp

Question - Câu hỏi/Đề bài

Cho hai tập hợp \(A = \left\{ {2k + 1\left| {k \in \mathbb{Z}} \right.} \right\}\) và \(B = \left\{ {6l + 3\left| {l \in \mathbb{Z}} \right.} \right\}\). Chứng minh rằng \(B \subset A\)

Chứng minh mọi phần tử thuộc B đều thuộc A

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

Ta có \(6l + 3 = 3\left( {2l + 1} \right)\)

Mặt khác k l đều là số nguyên, suy ra mọi phần tử của tập hợp B đều nằm trong tập hợp A

Suy ra tập hợp \(B = \left\{ {6l + 3\left| {l \in \mathbb{Z}} \right.} \right\} = \left\{ {3\left( {l + 1} \right)\left| {l \in \mathbb{Z}} \right.} \right\}\)là bội của \(\left( {2k + 1} \right)\) khi \(k = l\)

Suy ra \(B \subset A\) (đpcm)