Hãy chọn ngẫu nhiên trong lớp ra 5 bạn nam và 5 bạn nữ rồi do chiều cao các bạn đó. So sánh xem chiều cao của các bạn năm hay các bạn nữ đồng đều hơn.
Từ mẫu số liệu so sánh hai giá trị: Khoảng biến thiên hoặc khoảng tứ phân vị.
+ Nếu trong mẫu không có số liệu nào quá lớn hay quá nhỏ => so sánh khoảng biến thiên
+ Nếu trong mẫu có 1 số liệu quá lớn hoặc quá nhỏ => so sánh khoảng tứ phân vị.
Chiều cao 5 HS nam |
170 |
164 |
172 |
168 |
176 |
Chiều cao 5 HS nữ |
155 |
152 |
Advertisements (Quảng cáo) 157 |
162 |
160 |
+) Khoảng biến thiên chiều cao của các học sinh nam là: \(176 - 164 = 12\)
+) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm: \(164,168,170,172,176\)
Bước 2: \(n = 5\), là số lẻ nên \({Q_2} = {M_e} = 170\)
\({Q_1}\) là trung vị của nửa số liệu \(164,168\). Do đó \({Q_1} = \frac{1}{2}(164 + 168) = 166\)
\({Q_3}\) là trung vị của nửa số liệu \(172,176\). Do đó \({Q_3} = \frac{1}{2}(172 + 176) = 174\)
Khoảng tứ phân vị \({\Delta _Q} = 174 - 166 = 8\)
+) Khoảng biến thiên chiều cao của các học sinh nữ là: \(162 - 152 = 10\)
+) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm: \(152,155,157,160,162\)
Bước 2: \(n = 5\), là số lẻ nên \({Q_2} = {M_e} = 157\)
\({Q_1}\) là trung vị của nửa số liệu \(152,155\). Do đó \({Q_1} = \frac{1}{2}(152 + 155) = 153,5\)
\({Q_3}\) là trung vị của nửa số liệu \(160,162\). Do đó \({Q_3} = \frac{1}{2}(160 + 162) = 161\)
Khoảng tứ phân vị \({\Delta _Q} = 161 - 153,5 = 7,5\)
Kết luận: So sánh khoảng biến thiên hay tứ phân vị thì theo mẫu số liệu trên, chiều cao của 5 bạn nữ là đồng đều hơn.