Tìm tọa độ các tiêu điểm, tọa độ các đỉnh, độ dài trục lớn và trục nhỏ của các elip sau:
a) \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{16}} = 1\)
b) \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\)
c) \({x^2} + 16{y^2} = 16\)
Bước 1: Đưa phương trình về dạng phương trình chính tắc của elip
Bước 2: Phương trình có dạng \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\), \(c = \sqrt {{a^2} - {b^2}} \)ta có:
Tọa độ các tiêu điểm: \({F_1}\left( { - c;0} \right),{F_2}\left( {c;0} \right)\)
Tọa độ các đỉnh: \(A(0;b),B(a;0),C(0; - b),D( - a;0)\)
Độ dài trục lớn 2a
Độ dài trục nhỏ 2b
a) Phương trình \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{16}} = 1\) đã có dạng phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) nên ta có: \(a = 10,b = 4 \Rightarrow c = \sqrt {{a^2} - {b^2}} = \sqrt {{{10}^2} - {4^2}} = 2\sqrt {21} \)
Suy ra ta có:
Tọa độ các tiêu điểm: \({F_1}\left( { - 2\sqrt {21} ;0} \right),{F_2}\left( {2\sqrt {21} ;0} \right)\)
Advertisements (Quảng cáo)
Tọa độ các đỉnh: \(A(0;4),B(10;0),C(0; - 4),D( - 10;0)\)
Độ dài trục lớn 20
Độ dài trục nhỏ 8
b) Phương trình \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\) đã có dạng phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) nên ta có: \(a = 5,b = 4 \Rightarrow c = \sqrt {{a^2} - {b^2}} = \sqrt {{5^2} - {4^2}} = 3\)
Suy ra ta có:
Tọa độ các tiêu điểm: \({F_1}\left( { - 3;0} \right),{F_2}\left( {3;0} \right)\)
Tọa độ các đỉnh: \(A(0;4),B(5;0),C(0; - 4),D( - 5;0)\)
Độ dài trục lớn 10
Độ dài trục nhỏ 8
c) \({x^2} + 16{y^2} = 16 \Leftrightarrow \frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{1} = 1\)
Vậy ta có phương trình chính tắc của elip đã cho là \(\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{1} = 1\)
Suy ra \(a = 4,b = 1 \Rightarrow c = \sqrt {{a^2} - {b^2}} = \sqrt {{4^2} - {1^2}} = \sqrt {15} \)
Từ đó ta có:
Tọa độ các tiêu điểm: \({F_1}\left( { - \sqrt {15} ;0} \right),{F_2}\left( {\sqrt {15} ;0} \right)\)
Tọa độ các đỉnh: \(A(0;1),B(4;0),C(0; - 1),D( - 4;0)\)
Độ dài trục lớn 8
Độ dài trục nhỏ 2