1. Hàm số bậc hai
+ Định nghĩa:
Hàm số bậc hai biến x là hàm số cho bởi công thức dạng y=f(x)=ax2+bx+c với a,b,c∈R;a≠0.
+ Tập xác định: R
2. Đồ thị hàm số bậc hai
+) Đồ thị hàm số bậc hai y=f(x)=ax2+bx+c (a≠0) là một parabol (P):
- Đỉnh S(−b2a;−Δ4a)
- Trục đối xứng: đường thẳng x=−b2a
- Bề lõm: quay lên trên nếu a>0, quay xuống dưới nếu a<0
- Cắt Oy tại điểm (0;c)
* Chú ý: Nếu PT ax2+bx+c=0 có hai nghiệm x1,x2 thì đồ thị hàm số y=ax2+bx+c cắt trục hoành tại 2 điểm có hoành độ lần lượt là 2 nghiệm này.
+) Vẽ đồ thị
1) Xác định đỉnh S(−b2a;−Δ4a)
2) Vẽ trục đối xứng d: x=−b2a
3) Tìm tọa độ giao điểm của đồ thị với trục tung (A(0;c)), trục hoành (nếu có).
Xác định B(−ba;c) (là điểm đối xứng với A qua d)
4) Vẽ parabol đỉnh S, trục đối xứng d, đi qua các điểm tìm được.
3. Sự biến thiên của hàm số bậc hai
+) Bảng biến thiên
+) Kết luận:
|
a>0 |
a<0 |
Trên khoảng (−∞;−b2a) |
Advertisements (Quảng cáo) Hàm số nghịch biến |
Hàm số đồng biến |
Trên khoảng (−b2a;+∞) |
Hàm số đồng biến |
Hàm số nghịch biến |
GTLN hoặc GTNN |
Đạt GTNN bằng −Δ4a tại x=−b2a |
Đạt GTLN bằng −Δ4a tại x=−b2a |
Tập giá trị |
T=[−Δ4a;+∞) |
T=(−∞;−Δ4a] |
4. Ứng dụng của hàm số bậc hai
+) Tầm bay cao và tầm bay xa
Chọn điểm (0;y0) là điểm xuất phát thì phương trình quỹ đạo của cầu lông khi rời mặt vợt là:
y=−g.x22.v02.cos2α+tanα.x+y0
Trong đó:
g là giá tốc trọng trường ( ≈9,8m/s2)
α là góc phát cầu (so với phương ngang của mặt đất)
v0 là vận tốc ban đầu của cầu
y0 là khoảng cách từ vị trí phát cầu đến mặt đất
Quỹ đạo chuyển động của cầu lông là một parabol.
- Vị trí cao nhất tại đỉnh parabol, gọi là tầm bay cao;
- Khoảng cách từ nơi đứng phát cầu đến điểm cham đất, gọi là tầm bay xa.
+) Bài toán ứng dụng
Khi cầu bay tới vị trí lưới phân cách, nếu nó ở bên trên mặt lưới và điểm rơi không ra khỏi đường biến phía sân đối phương thì lần phát cầu được xem là hợp lệ.