Trang chủ Lớp 10 Toán lớp 10 Kết nối tri thức Bài 7.18 trang 47 Toán 10 – Kết nối tri thức: Chuyển...

Bài 7.18 trang 47 Toán 10 – Kết nối tri thức: Chuyển động của một vật thể trong khoảng thời gian 180 phút được thể hiện...

Giải bài 7.18 trang 47 SGK Toán 10 – Kết nối tri thức - Bài 21. Đường tròn trong mặt phẳng tọa độ

Question - Câu hỏi/Đề bài

Chuyển động của một vật thể trong khoảng thời gian 180 phút được thể hiệntrong mặt phẳng toạ độ. Theo đó, tại thời điểm t (\[0{\rm{ }} \le t \le 180\] ) vật thể ở vị trí có toạ độ\[\left( {2{\rm{ }} + {\rm{ }}sin{t^o};{\rm{ }}4{\rm{ }} + {\rm{ }}cos{t^o}} \right)\]. 

a) Tìm vị trí ban đầu và vị trí kết thúc của vật thể.

b) Tìm quỹ đạo chuyển động của vật thể.

a) Thay \(t = 0\) và \(t = 180\) để tìm tọa độ của chất điểm .

b) Khử \(t\) bằng cách sử dụng đẳng thức \({\left( {\sin {t^o}} \right)^2} + {\left( {\cos {t^o}} \right)^2} = 1\).

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

a) Vị trí ban đầu ứng với \(t = 0\), suy ra vật thể ở vị trí  có tọa độ là  \(A\left( {2;5} \right)\).

Vị trí kết thúc ứng với \(t = 180\) , suy ra vật thể ở vị trí có tọa độ là \(B\left( {2;3} \right)\).

b) Từ đẳng thức  \({\left( {\sin {t^o}} \right)^2} + {\left( {\cos {t^o}} \right)^2} = 1\) ta suy ra \({\left( {{x_M} - 2} \right)^2} + {\left( {{y_M} - 4} \right)^2} = 1\)

Do đó, M thuộc đường tròn \(\left( C \right)\) có phương trình  \({\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} = 1\)

Đường tròn có tâm \(I\left( {2;4} \right)\), bán kính \(R = 1\) và nhận AB làm đường kính.

Khi \(t \in \left[ {0;180} \right]\) thì \(\sin t \in \left[ {0;1} \right]\) và \(\cos t \in \left[ { - 1;1} \right]\). Do đó, \(2 + \sin {t^o} \in \left[ {2;3} \right]\) và \(4 + \cos {t^o} \in \left[ {3;5} \right]\).

Vậy quỹ đạo của  vật thể là nửa đường tròn đường kính AB vẽ trên nửa mặt phẳng chứa điểm \(C\left( {3;0} \right)\) bờ AB.

Advertisements (Quảng cáo)