Trang chủ Lớp 10 Toán lớp 10 Kết nối tri thức Bài 7.5 trang 34 Toán 10 – Kết nối tri thức: Chứng...

Bài 7.5 trang 34 Toán 10 – Kết nối tri thức: Chứng minh rằng, đường thẳng đi qua hai điểm (Aleft( {a;0} right),Bleft( {0;b}...

Giải bài 7.5 trang 34 SGK Toán 10 – Kết nối tri thức - Bài 19. Phương trình đường thẳng

Question - Câu hỏi/Đề bài

Chứng minh rằng, đường thẳng đi qua hai điểm \(A\left( {a;0} \right),B\left( {0;b} \right)\left( {ab \ne 0} \right)\) có phương trình \(\frac{x}{a} + \frac{y}{b} = 1\)

Viết phương trình tổng quát của AB rồi biến đổi phương trình về dạng cần chứng minh.

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

Đường thẳng AB có một vectơ chỉ phương là \(\overrightarrow {{u_{AB}}}  = \overrightarrow {AB}  = \left( { - a;b} \right)\). Do đó \(\overrightarrow {{n_{AB}}}  = \left( {b;a} \right)\)

Phương trình tổng quát của đường thẳng AB có vectơ pháp tuyến  \(\overrightarrow {{n_{AB}}}  = \left( {b;a} \right)\) và đi qua điểm \(A\left( {a;0} \right)\)là: \(b\left( {x - a} \right) + a\left( {y - 0} \right) \Leftrightarrow bx + ay - ab = 0 \Leftrightarrow \frac{x}{a} + \frac{y}{b} = 1\).

Advertisements (Quảng cáo)