Bài 2. Đơn giản các biểu thức
a) \(\sin {100^0} + \sin {80^0} + \cos {16^0} + \cos {164^0}\);
b) \(2\sin ({180^0} - \alpha )\cot \alpha - \cos ({180^0} - \alpha )\tan \alpha \cot ({180^0} - \alpha )\) với \({0^0} < \alpha < {90^0}\).
Advertisements (Quảng cáo)
a) Ta có
\(\eqalign{
& \sin {100^0} = \sin ({180^0} - {80^0}) = \sin {80^0}\,\,\,;\,\,\,\,\cos {164^0} = \cos ({180^0} - {16^0}) = - \cos {16^0} \cr
& \Rightarrow \,\,\,\,\sin {100^0} + \sin {80^0} + \cos {16^0} + \cos {164^0} \cr
& \,\,\,\,\, = \,\sin {80^0} + \sin {80^0} + \cos {16^0} - \cos {16^0} \cr
& \,\,\,\,\, = 2\sin {80^0}. \cr} \)
b) Ta có
\(\eqalign{
& \,\,\,\,2\sin ({180^0} - \alpha )\cot \alpha - \cos ({180^0} - \alpha )\tan \alpha \cot ({180^0} - \alpha ) \cr
& = 2\sin \alpha {{\cos \alpha } \over {\sin \alpha }} - \cos \alpha {{\sin \alpha } \over {\cos \alpha }}{{\cos \alpha } \over {\sin \alpha }} \cr
& = 2\cos \alpha - \cos \alpha \cr
& = \cos \alpha . \cr} \)