Cho \(\lim {u_n} = a\), \(\lim {v_n} = b\). Phát biểu nào sau đây là SAI?
A. \(\lim \left( {{u_n} + {v_n}} \right) = a + b\)
B. \(\lim \left( {{u_n} - {v_n}} \right) = a - b\)
C. \(\lim \left( {{u_n}.{v_n}} \right) = a.b\)
D. \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{{a - b}}{b}\)
Sử dụng định lý về giới hạn hữu hạn: Nếu \(\lim {u_n} = a\), \(\lim {v_n} = b\) thì:
Advertisements (Quảng cáo)
\(\lim \left( {{u_n} + {v_n}} \right) = a + b\), \(\lim \left( {{u_n} - {v_n}} \right) = a - b\), \(\lim \left( {{u_n}.{v_n}} \right) = ab\)
Trường hợp \({v_n} \ne 0\) và \(b \ne 0\), ta có \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{a}{b}\)
Trường hợp \({u_n} \ge 0\) với \(\forall n\) thì \(a \ge 0\) và \(\lim \sqrt {{u_n}} = \sqrt a \).
Sử dụng định lý về giới hạn hữu hạn, ta có
\(\lim \left( {{u_n} + {v_n}} \right) = a + b\), \(\lim \left( {{u_n} - {v_n}} \right) = a - b\), \(\lim \left( {{u_n}.{v_n}} \right) = ab\)
Và \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{a}{b} \ne \frac{{a - b}}{b}\) trong trường hợp \({v_n} \ne 0\) và \(b \ne 0\).
Đáp án đúng là đáp án D.