Cho đồ thị hàm số \(y = f\left( x \right)\) trong hình dưới đây. Phát biểu nào sau đây là SAI?
A. Hàm số \(y = f\left( x \right)\) không liên tục tại \(x = 1\).
B. Hàm số \(y = f\left( x \right)\) không liên tục tại \(x = 3\).
C. Hàm số \(y = f\left( x \right)\) không liên tục tại \(x = 5\).
D. Hàm số \(y = f\left( x \right)\) không liên tục tại \(x = 0\).
Advertisements (Quảng cáo)
Sử dụng định nghĩa hàm số liên tục tại một điểm.
Nhìn vào đồ thị, ta thấy:
+ \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right)\), nhưng trên hình vẽ ta thấy \(f\left( 1 \right)\) không tồn tại, nên hàm số không liên tục tại \(x = 1\).
+ \(\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right)\) nên hàm số không liên tục tại \(x = 3\).
+ \(\mathop {\lim }\limits_{x \to {5^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {5^ + }} f\left( x \right) \ne f\left( 5 \right)\) nên hàm số không liên tục tại \(x = 5\).
+ \(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = f\left( 0 \right)\) nên hàm số liên tục tại \(x = 0\).
Đáp án cần chọn là đáp án D.